Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Mercury soil contents and associated ecological and health risks in kindergartens and functional areas of the city of Vanadzor (Armenia)

https://doi.org/10.24057/2071-9388-2019-121

Full Text:

Abstract

Mercury is a widespread environmental pollutant becoming a crucial health concern as a result of natural and anthropogenic releases. Understanding Hg distribution pattern between different functional urban areas is needed for urban pollution control and health impact assessment. Therefore, in this paper urban soil Hg spatial distribution, pollution level evaluation, and mercury-induced health risks were studied, for different urban functional areas (355 samples) and kindergartens (18 samples) of Vanadzor. Geospatial mapping and the geostatistical analysis suggest that Hg concentration in the entire area of Vanadzor and its kindergartens has a natural origin, besides a certain anthropogenic impact on some urban sites. According to geoaccumulation index (Igeo), uncontaminated or moderately contaminated levels were detected only in 2 samples from industrial area and 5 samples from residential area, the remaining samples were classified as uncontaminated. In all kindergartens and the 22.15 sq.km of the city (270 samples) are characterized by low level potential ecological risk, whereas 3.85 sq.km (85 samples) correspond to moderate and for 1 sampling site high level of potential ecological risk. A non-carcinogenic health risk assessed for children and adults indicates health hazards neither in Vanadzor entire areas nor in kindergartens. The hazard index (HI) in each urban functional area is less than allowable level (HI <1) for children and adults. Obtained results are indicative and offer the ability for better management of urban soil and urban planning in terms of Hg pollution regulation in different functional areas.

About the Authors

Lilit Sahakyan
The Center for Ecological-Noosphere Studies, NAS
Armenia

Abovyan str. 68, Yerevan, 0025



Gevorg Tepanosyan
The Center for Ecological-Noosphere Studies, NAS
Armenia

Abovyan str. 68, Yerevan, 0025



Gayane Melkonyan
The Center for Ecological-Noosphere Studies, NAS
Armenia

Abovyan str. 68, Yerevan, 0025



Nairuhi Maghakyan
The Center for Ecological-Noosphere Studies, NAS
Armenia

Abovyan str. 68, Yerevan, 0025



Armen Saghatelyan
The Center for Ecological-Noosphere Studies, NAS
Armenia

Abovyan str. 68, Yerevan, 0025



References

1. Ajmone-Marsan F. and Biasioli M. (2010). Trace elements in soils of urban areas. Water Air Soil Pollut 1(4), 121–143, DOI: 10.1007/s11270-010-0372-6

2. AMAP/UNEP (2013). Technical Background Report for the Global Mercury Assessment. Arctic Monitoringand Assessment Programme Oslo, Norway/UNEP ChemicalsBranch.

3. Alloway B. (2013). Heavy Metals in Soils Trace Metals and Metalloids in Soils and their Bioavailability Chapter 15 Mercury. In: Environmental Pollution 411-428, DOI: 10.1007/978-94-007-4470-7_15

4. Barbieri M. (2016). The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J Geol Geophys 5(1) 1-4, DOI: 10.4172/2381-8719.1000237

5. Beckers F., Rinklebe J. (2017). Cycling of Mercury in the Environment: Sources, Fate, and Human Health Implications -A Review. Crit Rev Environ Sci Technol 3389, DOI: 10.1080/10643389.2017.1326277

6. Bernhoft R. (2012). Mercury toxicity and treatment: A review of the literature. J Environ Public Health 10., DOI: 10.1155/2012/460508

7. Birke M. and Rauch U. (2000). Urban geochemistry: Investigations in the Berlin metropolitan area. Environ Geochem Health (22) 233–248. DOI: 10.1023/A:1026554308673

8. Bityukova L., Shogenova A., Birke M. (2000). Urban geochemistry: A study of element distributions in the soils of Tallinn (Estonia). Environ Geochem Health 22, 173–193. DOI: 10.1023/A:1006754326260

9. Butakov E V., Kuznetsov P V., Kholodova MS, Grebenshchikova VI (2017). Mercury in soils of the agro-industrial zone of Zima city (Irkutsk oblast). Eurasian Soil Sci 50, 1354–1361. DOI: 10.1134/S1064229317110035

10. Chen X., Xia X., Wu S. et al (2010). Mercury in urban soils with various types of land use in Beijing, China. Environ Pollut 158, 48–54. DOI: 10.1016/j.envpol.2009.08.028

11. Christoforidis A. and Stamatis N. (2009). Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 151, 257–263. DOI: 10.1016/j.geoderma.2009.04.016

12. Crnković D., Ristić M., Antonović D. (2006). Distribution of heavy metals and arsenic in soils of Belgrade (Serbia and Montenegro). Soil Sediment Contam 15, 581–589. DOI: 10.1080/15320380600959073

13. DEQ (2015). Remediation and Redevelopment Division Michigan Department of Environmental Quality Part 201 Generic Exposure Assumption Values Update Subjects:Technical support document. Michigan.

14. Driscoll T., Mason P., Chan M. et al (2013). Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ Sci Technol 47, 4967−4983. DOI: 10.1021/es305071v

15. Fang F, Wang Q, Li J (2004). Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: Source, cycle, and fate. Sci Total Environ 330, 159–170. DOI: 10.1016/j.scitotenv.2004.04.006

16. Golovin A. (2000). Assessment of damage to the environment from pollution by toxic metals. IMGRE (34):

17. Gray E, Theodorakos M, Fey L, Krabbenhoft P (2015). Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environ Geochem Health 37, 35–48. DOI: 10.1007/s10653-014-9628-1

18. Hakanson L (1980). An ecological risk index for aquatic pollution control, a sedimentological approach. Water Res 14, 975–1001. DOI: 10.1016/0043-1354(80)90143-8

19. Karakhanian A., Trifonov V, Philip H. et al (2004). Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran, Tectonophysics 380 (3-4) 189–219, DOI: 10.1016/j.tecto.2003.09.020

20. Kelepertzis E, Argyraki A (2015). Mercury in the urban topsoil of Athens, Greece. Sustain. 7(4), 4049–4062. DOI: 10.3390/su7044049

21. Kosheleva N, Kasimov N, Dorjgotov D et al (2010). Assessment of Heavy Metal Pollution of Soils in Industrial Cities of Mongolia, Geography, Environment, Sustainability; 3(2) 51-65. DOI: 10.24057/2071-9388-2010-3-2-51-65

22. Kotova T.V., Malkhazova S.M., Tikunov V.S., Bandrova T (2017). Visualization of public health dynamics. Geography Environment Sustainability, 10 (4), 27–42. DOI: 10.24057/2071-9388-2017-10-4-27-42

23. Kumar M, Gogoi A, Kumari D, et al (2017). Review of Perspective, Problems, Challenges, and Future Scenario of Metal Contamination in the Urban Environment. J Hazardous, Toxic, Radioact Waste, 21(4) 04017007-7, DOI: 10.1061/(ASCE)HZ.2153-5515.0000351

24. Kumpiene J, Brännvall E (2011). Spatial variability of topsoil contamination with trace elements in preschools in Vilnius, Lithuania. J Geochemical Explor 108(1) 15–20. DOI: 10.1016/J.GEXPLO.2010.08.003

25. Laker M. (2005). Urban soils: Land use, Land Cover and Land Sciences. In: Encyclopedia of Life Support Systems (EOLSS)

26. Li F, Zhang J, Jiang W, et al (2017). Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China. Environ Geochem Health, 39 (4), 923–934. DOI: 10.1007/s10653-016-9864-7.

27. Li P, Feng XB, Qiu GL, et al (2009). Mercury pollution in Asia: A review of the contaminated sites. J Hazard Mater 168, 591–601. DOI: 10.1016/j.jhazmat.2009.03.031.

28. Li XH, Cheng HX, Zhao CD, Xu XB (2010). Mercury contamination in the topsoil and subsoil of urban areas of Beijing, China. Bull Environ Contam Toxicol. 85, 224–228 DOI: 10.1007/s00128-010-0042-9

29. Lymberidi E (2005). Zero Mercury Key issues and policy recommendations for the EU Strategy on Mercury. European Environmental Bureau,UK,133.

30. Mamtani R, Stern P, Dawood I, Cheema S (2011). Metals and disease: a global primary health care perspective. J Toxicol 1-10, DOI: 10.1155/2011/319136.

31. Manta D, Angelone M, Bellanca A (2002). Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ, 300, 229–243.

32. McGrath D (1995) Organic micropollutant and trace element pollution of Irish soils. Sci Total Environ, 164(2), 125–133. DOI: 10.1016/0048-9697(95)04451-6.

33. Mielke, H., Alexander J (2011). Children, soils, and health: how do polluted soils influence children’s health? In: Mapping the Chemical Environment of Urban Areas. Wiley-Blackwell, 134–150.

34. Moller K.M., Hartwell J.G., Simon-friedt B.R., et al (2018). Soil contaminant concentrations at urban agricultural sites in New Orleans , Louisiana : A comparison of two analytical methods. J Agric Food Syst Community Dev, 8(2), 139–149, DOI: 10.5304/jafscd.2018.082.010.

35. Morton-Bermea O, Hernández-Álvarez E, Ordoñez-Godinez SL (2016). Mercury and other trace elements contamination of the urban area of Mexico City: Use of ficus benjamina as biomonitor.

36. Müller G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geo J 2, 108– 118.

37. Nazarpour A, Ghanavati N, Watts MJ (2017). Spatial distribution and human health risk assessment of mercury in street dust resulting from various land-use in Ahvaz, Iran. Environ Geochem Health 1–12. DOI: 10.1007/s10653-017-0016-5.

38. Nazaryan G. (2009). Geo Alaverdi, Еnvironment and development of the city. Yerevan.

39. Nezhad K.(2014). Cadmium and mercury in topsoils of Babagorogor watershed, western Iran. In: Distribution, relationship with soil characteristics and multivariate analysis of contamination sources. Geoderma, 177–185. DOI: 10.1016/j.geoderma.2013.12.021.

40. Pan L, Wang Y, Ma J, et al (2018). A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ Sci Pollut Res, (25), 1055–1069. DOI: 10.1007/s11356-017-0513-1.

41. RAIS (2018) The Risk Assessment Information System Risk Exposure Models for Chemicals User’s Guide. Available at: https://rais.ornl.gov/tools/rais_chemical_risk_guide.html [Accessed 25 Nov. 2019]

42. Reimann C, de Caritat P (1998). Chemical Elements in the Environment. Springer Berlin Heidelberg.

43. Rice K, Walker E, Wu M. et al (2014). Environmental mercury and its toxic effects. J. Prev. Med. Public Heal. 47.

44. Rodrigues S, Pereira M. Duarte A. et al (2006) Mercury in urban soils: A comparison of local spatial variability in six European cities. Sci Total Environ 368 (2-3), 926–936. DOI: 10.1016/j.scitotenv.2006.04.008

45. Saleem M (2014). Non-carcinogenic and carcinogenic health risk assessment of selected metals in soil around a natural water reservoir, Pakistan. Ecotoxicol Environ Saf, 108, 42–51. DOI: 10.1016/j.ecoenv.2014.06.017.

46. Sastry R, Orlemann J, Koval P. (2001). Mercury Contamination from Metal Scrap Processing Facilities – A Study by Ohio EPA.

47. Selin NE (2009). Global Biogeochemical Cycling of Mercury: A Review Methylmercury: the toxic form of mercury, CH 3 Hg +. Annu. Rev. Environ. Resour 34, 43–63 DOI: 10.1146/annurev.environ.051308.084314.

48. Soliman N, Nasr S, Okbah M. (2015). Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. J Environ Heal Sci Eng 13, 70. DOI: 10.1186/s40201-015-0223-x.

49. State Committee of the Real Estate Cadastre (2007). Center of Geodesy and Cartography National Atlas of Armenia. Yerevan.

50. Stauffer E. (2008). Field Sampling Procedures Manual ,Chapter 6 -Sample Collection. Fire Debris Anal 188, 163–197. DOI: 10.1016/B978-012663971-1.50010-5

51. Steffan JJ, Brevik EC, Burgess LC, Cerdà A (2018). The effect of soil on human health: an overview. Eur J Soil Sci 69:159–171. DOI: 10.1111/ejss.12451

52. Sun, Y., Zhou, Q., Xie, X., Liu R (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J Hazard Mater 174, 455–462. DOI: 10.1016/J.JHAZMAT.2009.09.074

53. Sun G, Li Z, Bi X, et al (2013). Distribution, sources and health risk assessment of mercury in kindergarten dust. Atmos Environ 73, 169–176. DOI: 10.1016/j.atmosenv.2013.03.017.

54. Różański S at al. (2015). Profile distribution of mercury in selected urban soils. Environ Prot Nat Resour 26, 1–5. DOI: 10.1515/OSZN-2015-0016.

55. Tepanosyan G, Maghakyan N, Sahakyan L, Saghatelyan A (2017a) Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicol Environ Saf 142, 257–265. DOI: 10.1016/j.ecoenv.2017.04.013.

56. Tepanosyan G.O., Belyaeva O.A,. Saakyan L.V., Sagatelyan AK (2017b). Integrated approach to determine background concentrations of chemical elements in soils. Geochemistry Int 55, 581–588. DOI: 10.1134/S0016702917060106.

57. Tijhuis L. (2002). A geochemical survay of topsoil in the city of Oslo, Norway, Environmental Geochemistry and Health 24, 67–94.

58. U.S. EPA (2011) Exposure Factors Handbook (2011 Final Report) -Chapter 8. 25–26

59. UNEP (2013) Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. Geneva, Switzerland.

60. US EPA (2002a) Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. United States Environmental Protection Agency.

61. US EPA (1989) Risk Assessment Guidance for Superfund. Volume I Human Health Evaluation Manual (Part A). United States Environmental Protection Agency, Washington.

62. US EPA (2011) Soil and dust ingestion. Expo Factors Handb. United States Environmental Protection Agency, Washington.

63. US EPA Risk Assessment Guidance for Superfund (RAGS): Part A. EPA/540/1-89/002: United States Environmental Protection Agency, Washington.

64. US EPA (2002b) Child-Specific Exposure Factors Handbook, 448, United States Environmental Protection Agency, Washington.

65. USEPA (2004) Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (HHEM). Part E. Supplemental guidance for dermal risk assessmentUSEPA, 2004. Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (H. US Epa 1:1–156. DOI: EPA/540/1-89/002.

66. Wan D, Han Z, Yang J. et al (2016). Heavy metal pollution in settled dust associated with different urban functional areas in a heavily air-polluted city in North China. Int J Environ Res Public Health 13, DOI: 10.3390/ijerph13111119.

67. Wip D, Warneke T, Petersen A. et al (2013). Urban mercury pollution in the City of Paramaribo, Suriname. Air Qual Atmos Heal 6, 205–213. DOI: 10.1007/s11869-011-0162-3.

68. Yanin E. (1992). Mercury in the environment of an industrial city, IMGRE. Moscow.

69. Yuan G-L, Sun T-H, Han P. (2014). Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing, China. J Geochemical Explor 136, 40–47. DOI: 10.1016/J.GEXPLO.2013.10.002

70. Zhao W, Ding L, Gu X, et al (2015). Levels and ecological risk assessment of metals in soils from a typical e-waste recycling region in southeast China. Ecotoxicology 24, 1947–1960. DOI: 10.1007/s10646-015-1532-7.

71. Zheng L, Tang Q, Fan J, et al (2015). Distribution and health risk assessment of mercury in urban street dust from coal energy dominant Huainan City, China. Environ Sci Pollut Res. DOI: 10.1007/s11356-015-4089-3.


For citation:


Sahakyan L., Tepanosyan G., Melkonyan G., Maghakyan N., Saghatelyan A. Mercury soil contents and associated ecological and health risks in kindergartens and functional areas of the city of Vanadzor (Armenia). GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(4):252-271. https://doi.org/10.24057/2071-9388-2019-121

Views: 255


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)