Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Lake Sevan Shoreline Change Assessment Using Multi-Temporal Landsat Images

https://doi.org/10.24057/2071-9388-2019-46

Full Text:

Abstract

Shoreline changes are important indicators of natural and manmade impacts on inland waters and particularly lakes. Man-induced changes in Lake Sevan water level during the 20th century affected not only the ecological status of the Sevan water but also near-shore areas. This article considers a long-term study of changes in Lake Sevan shoreline that occurred between 1973 and 2015. The Normalized Difference Water Index (NDWI) was applied to delineate the Sevan shoreline changes according to periods of lake water fluctuation from multi-temporal Landsat images and Historical changes in shorelines were analyzed with help of the Digital Shoreline Analysis System (DSAS) toolbox. Data obtained from the analysis have indicated that changes in the lake shoreline that occurred in different periods are similar to those in the lake water balance. Areas with the greatest shoreline changes have comparatively flat relief, so in the result of the lake water level raise vast forested areas were submerged. This study shows that application of multi-temporal spatial imagery and GIS methods can provide valuable information on time-and-space changes in the Sevan shoreline. Such information is important for monitoring Lake Sevan shoreline and nearshore changes.

About the Authors

Azatuhi Hovsepyan
Center for Ecological – Noosphere Studies NAS RA
Armenia

GIS & Remote sensing department

Abovyan str. 68, Yerevan, 0025, Armenia



Garegin Tepanosyan
Center for Ecological – Noosphere Studies NAS RA
Armenia

GIS & Remote sensing department

Abovyan str. 68, Yerevan, 0025, Armenia



Vahagn Muradyan
Center for Ecological – Noosphere Studies NAS RA
Armenia

GIS & Remote sensing department

Abovyan str. 68, Yerevan, 0025, Armenia



Shushanik Asmaryan
Center for Ecological – Noosphere Studies NAS RA
Armenia

GIS & Remote sensing department

Abovyan str. 68, Yerevan, 0025, Armenia



Andrey Medvedev
Institute of Geography Russian Academy of Sciences
Russian Federation

Laboratory of Cartography

Staromonetny line 29, Moscow, 119017



Alexander Koshkarev
Institute of Geography Russian Academy of Sciences
Russian Federation

Laboratory of Cartography

Staromonetny line 29, Moscow, 119017



References

1. Agyemang, T. K., Schmieder, K., Heege, T., Heblinski, J., Sajadyan, H., Vardanyan, L., & Böcker, R. (2017). Reviewing Lake Sevan’s surface area using remote sensing & GIS techniques. SIL Proceedings, 1922-2010, 30(8), 1264–1266. https://doi.org/10.1080/03680770.2009.11923926

2. Aladin, N., Crétaux, J. F., Plotnikov, I. S., Kouraev, A. V., Smurov, A. O., Cazenave, A., … Papa, F. (2005). Modern hydro-biological state of the Small Aral sea. Environmetrics, 16(4), 375–392. https://doi.org/10.1002/env.709

3. Alesheikh, A. A., Ghorbanali, A., & Nouri, N. (2007). Coastline change detection using remote sensing. International Journal of Environmental Science and Technology, 4(1), 61–66. https://doi.org/10.1007/BF03325962

4. Babayan A., Hakobyan S., Jenderjyan K., Muradyan S., (2013). Lake Sevan: Experience and Lessons learned Brief. Experience and Lessons Learned Brief, 6, 347–362. Retrieved from http://www.ndr.mw:8080/xmlui/handle/123456789/384

5. Babich D.B., Vinogradov N.N., Ivanov V.V., Korotaev V.N., Chalova E.R. (2015). DELTAS OF THE RIVERS RUNNING IN TO LAKES AND RESERVOIRS: MORPHOGENETIC TYPES AND RECENT DYNAMICS. Vestnik Moskovskogo Unviersiteta, Seriya Geografiya, 4, 18-26. (In Russian with English summary)

6. Baghdasaryan, A. B., Abrahamyan, S. B., & Aleksandryan, G. A. (1971). Physical geography of Armenian SSR. (A. Baghdasaryan (editor-in-chief), Ed.). Yerevan: AS ArmSSR.

7. Bagli, S., Soille, P., & Fermi, E. (2004). Automatic delineation of shoreline and lake boundaries from Landsat satellite images. Proceedings of Initial ECO-IMAGINE GI and GIS for Integragted Coastal Management, (May), 13–16. Retrieved from http://www.gisig.it/eco-imagine/fullpapers/bagli-soille2004eipaper.pdf

8. Bai, J., Chen, X., Li, J., Yang, L., & Fang, H. (2011). Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environmental Monitoring and Assessment, 178(1–4), 247–256. https://doi.org/10.1007/s10661-010-1686-y

9. Boak, E. H., & Turner, I. L. (2006). Shoreline Definition and Detection: A Review. Journal of Coastal Research, 214, 688–703. https://doi.org/10.2112/03-0071.1

10. Dokulil, M. T. (2014). Impact of climate warming on European inland waters. Inland Waters, 4(1), 27–40. https://doi.org/10.5268/IW-4.1.705

11. Du, Z., Li, W., Zhou, D., Tian, L., Ling, F., Wang, H., … Sun, B. (2014). Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sensing Letters, 5(7), 672–681. https:// doi.org/10.1080/2150704X.2014.960606

12. Duru, U. (2017). Shoreline change assessment using multi-temporal satellite images : a case study of Lake Sapanca , NW Turkey. https://doi.org/10.1007/s10661-017-6112-2

13. El-asmar, H. M., Hereher, M. E., & Kafrawy, S. B. El. (2013). Surface area change detection of the Burullus Lagoon , North of the Nile Delta , Egypt , using water indices : A remote sensing approach. The Egyptian Journal of Remote Sensing and Space Sciences, 16(1), 119–123. https://doi.org/10.1016/j.ejrs.2013.04.004

14. Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140(January), 23–35. https://doi.org/10.1016/j.rse.2013.08.029

15. Gutman, G., Huang, C., Chander, G., Noojipady, P., & Masek, J. G. (2013). Assessment of the NASA-USGS Global Land Survey (GLS) datasets. Remote Sensing of Environment, 134, 249– 265. https://doi.org/10.1016/j.rse.2013.02.026

16. Hydrological regime of Lake Sevan. (2017). Yerevan.

17. Kireev, V. (1933). Materials on the investigation of Sevan its basin. (V. Davydov, Ed.). Leningrad.

18. Lake Sevan drainage basin planning project, Pub. L. No. 746-ủ (2013). Armenia.

19. Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., … Zhang, X. (2013). A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sensing, 5(11), 5530–5549. https://doi.org/10.3390/rs5115530

20. McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425– 1432. https://doi.org/10.1080/01431169608948714

21. Ministry of Nature Protection of the Republic of Armenia. (1998). First national communication of the Republic of Armenia under the United Nations Framework Convention on Climate Change.

22. Ogannesian R. (1994). Lake Sevan yesterday, today... Yerevan.

23. Oyedotun, T. D. T. (2017). Historical Shoreline Changes as Indication of Geomorphic Phases in St Ives and Padstow Bays of Southwest England. Environmental Processes, 4(1), 273–282. https://doi.org/10.1007/s40710-017-0213-3

24. Papikyan, S. (2011). Sevan Problem. Yerevan.

25. Pavlov, D. S., Kopylov, A. I., Poddubny, S. A., Gabrielyan, B. K., Chilingaryan, L. A., Mnatsakanyan, B. P., … Krylov, A. V. (2010). Ecology of Lake Sevan during a raise of its level. The Results of Russian-Armenian Biological Expedition for Hydroecological Survey of Lake Sevan (Armenia) (2005–2009). (K. A. Pavlov D., Poddubniy S., Gabrielyan B., Ed.). Makhachkala.

26. Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584

27. Qiao, C., Luo, J., Sheng, Y., Shen, Z., Zhu, Z., & Ming, D. (2012). An Adaptive Water Extraction Method from Remote Sensing Image Based on NDWI. Journal of the Indian Society of Remote Sensing, 40(3), 421–433. https://doi.org/10.1007/s12524-011-0162-7

28. Qiao, G., Mi, H., Wang, W., Tong, X., Li, Z., Li, T., … Hong, Y. (2018). 55-year (1960–2015) spatiotemporal shoreline change analysis using historical DISP and Landsat time series data in Shanghai. International Journal of Applied Earth Observation and Geoinformation, 68(February), 238–251. https://doi.org/10.1016/j.jag.2018.02.009

29. Samanta, S., & Paul, S. K. (2016). Geospatial analysis of shoreline and land use/land cover changes through remote sensing and GIS techniques. Modeling Earth Systems and Environment, 2(3), 108. https://doi.org/10.1007/s40808-016-0180-0

30. The Digital Shoreline Analysis System (DSAS) Version 4.0 -An ArcGIS extension for calculating shoreline change. (2009).

31. Timoshkin, O. A., Samsonov, D. P., Yamamuro, M., Moore, M. V., Belykh, O. I., Malnik, V. V., … Bukshuk, N. A. (2016). Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world’s greatest freshwater biodiversity in danger? Journal of Great Lakes Research, 42(3), 487–497. https://doi.org/10.1016/j.jglr.2016.02.011

32. USGS EROS. (2017). Landsat Collection 1 Level 1 Product Definition. Retrieved from https://landsat.usgs.gov/sites/default/files/documents/LSDS-1656_Landsat_Level-1_Product_Collection_Definition.pdf

33. Vogt, J., Soille, P., De Jager, A., Rimavičiūtė, E., Mehl, W., Foisneau, S., … Bamps, C. (2007). A pan-European river and catchment database. JRC Reference Reports. https://doi.org/10.2788/35907

34. Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., … Roy, D. P. (2016). Remote Sensing of Environment The global Landsat archive : Status , consolidation , and direction. Remote Sensing of Environment, 185, 271–283. https://doi.org/10.1016/j.rse.2015.11.032

35. Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179

36. USGS, (2019). USGS Landsat missions [online] Available at: https://landsat.usgs.gov [Accessed 22 January 2019]


For citation:


Hovsepyan A., Tepanosyan G., Muradyan V., Asmaryan S., Medvedev A., Koshkarev A. Lake Sevan Shoreline Change Assessment Using Multi-Temporal Landsat Images. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(4):212-229. https://doi.org/10.24057/2071-9388-2019-46

Views: 507


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)