Advanced search

Aerosol and Its Radiative Effects during the Aeroradcity 2018 Moscow Experiment

Full Text:


During the AeroRadCity-2018 spring aerosol experiment at the Moscow State University Meteorological Observatory the aerosol properties of the atmosphere and radiative aerosol effects were analyzed using a wide complex of measurements and model COSMO-ART simulations over Moscow domain. The program of measurements consisted of columnar aerosol AERONET retrievals, surface PM10, black carbon (BC) and aerosol gas precursors mass concentrations, as well as radiative measurements under various meteorological conditions. We obtained a positive statistically significant dependence of total and fine aerosol optical depth (AOD) mode (R2 ~0.4) with PM concentrations. This dependence has revealed a pronounced bifurcation point around PM10=0.04 mgm-3. The modelled BC concentration is in agreement with the observations and has a pronounced correlation with PM, but not with the AODs. The analysis of radiative effects of aerosol has revealed up to 30% loss for UV irradiance and 15% - for shortwave irradiance at high AOD in Moscow. Much intensive radiation attenuation is observed in the afternoon when remote pollution sources may affect solar fluxes at elevated boundary layer conditions. Negative (cooling) radiative forcing effect at the top of the atmosphere from -18 Wm-2 to -4 Wm-2 has been evaluated. Mean difference in visible AOD between urban and background conditions in Moscow and Zvenigorod was about 0.01 according to measurements and model simulations, while in some days the difference may increase up to 0.05. The generation of urban aerosol was shown to be more favorable in conditions with low intensity of pollutant dispersion, when mean deltaAOD550 was doubled from 0.01 to 0.02.

About the Authors

Natalia E. Chubarova
Moscow State University
Russian Federation

Faculty of Geography

119991, Moscow

Elizaveta E. Androsova
Moscow State University
Russian Federation

Faculty of Geography

119991, Moscow

Alexandr A. Kirsanov
Hydrometeorological Centre of Russia
Russian Federation
11-13, B. Predtechensky per., Moscow, 123242

Bernhard Vogel
Karlsruhe Institute of Technology

Heike Vogel
Karlsruhe Institute of Technology

Olga B. Popovicheva
Moscow State University
Russian Federation

Faculty of Physics

119991, P.O. Box 3640 76021, Moscow

Gdali S. Rivin
Hydrometeorological Centre of Russia; Moscow State University
Russian Federation
11-13, B. Predtechensky per., Moscow, 123242; Faculty of Geography, 119991, Moscow


1. Bityukova V.R., Saulskaya T.D. (2017). Changes of the anthropogenic impact of Moscow industrial zones during the recent decades. Vestnik Moskovskogo Unviersiteta, Seriya Geografiya, 3, pp. 24-33. (In Russian with English summary)

2. Cheng Z., Luo L., Wang S., Wang Y., Sharma S., Shimadera H., Wang X., Bressi M., de Miranda R.M., Jiang J., Zhou W., Fajardo O., Yan N., and Hao J. (2016). Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, vol. 89-90, pp. 212-221. DOI:10.1016/j.envint.2016.02.003.

3. Сhubarova N., Smirnov А., Holben B.N. (2011a). Aerosol properties in Moscow according to 10 years of AERONET measurements at the Meteorological Observatory of Moscow State University. Geography, Environment, Sustainability, vol. 4, № 1, pp. 19-32.

4. Chubarova N. Y., Sviridenkov M.A., Smirnov A., and Holben B.N. (2011b). Assessments of urban aerosol pollution in Moscow and its radiative effects. Atmospheric Measurement Techniques, vol. 4, № 2, pp. 367–378. DOI:10.5194/amt-4-367-2011.

5. Chubarova N., Nezval' Ye, Sviridenkov I., Smirnov A., and Slutsker I. (2012). Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010. Atmospheric Measurement Techniques, vol. 5, pp. 557-568. DOI:10.5194/amt-5-557-2012.

6. Chubarova N., Belikov I., Gorbarenko E., Eremina I., Zhdanova E.Y., Korneva I., Konstantinov P., Lokoshchenko M., Skorokhod A., and Shilovtseva O. (2014). Climatic and environmental characteristics of Moscow megalopolis according to the data of the Moscow State University Meteorological Observatory over 60 years. Russian Meteorology and Hydrology, vol. 39, pp. 602-613. DOI:10.3103/S1068373914090052.

7. Chubarova N., Poliukhov A., and Gorlova I. (2016). Long-term variability of aerosol optical thickness in eastern Europe over 2001–2014 according to the measurements at the Moscow MSU MO AERONET site with additional cloud and NO2 correction. Atmospheric Measurement Techniques, vol. 9, № 2., pp. 313–334. DOI:10.5194/amt-9-313-2016.

8. Chubarova N., Poliukhov A., Shatunova M., Rivin G., Becker R., and Kinne S. (2018). Clear-sky radiative and temperature effects of different aerosol climatologies in the Cosmo model. Geography, Environment, Sustainability, vol. 11, № 1, pp. 74-84. DOI:10.24057/2071-9388-2018-11-1-74-84.

9. Climate of Moscow in global warming conditions (2017). Edited by Kislov A.V. Moscow: Moscow University Press (in Russian).

10. Dubovik O. and King M.D. (2000). A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J. Geophys. Res., vol. 105, № D16, pp. 20673-20696. DOI:10.1029/2000JD900282.

11. Emilenko A.C., Geng-Chen W., Kopeikin V.M., and Isakov A.A. (2018). Urban and regional classes of aerosol taking Beijing and Moscow as examples. Proc. SPIE 10833, 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 108334T. DOI:10.1117/12.2504379.

12. Golitsyn G.S., Grechko E.I., Wang G., Wang P., Dzhola A.V., Emilenko A.S., Kopeikin V.M., Rakitin V.S., Safronov A.N., and Fokeeva E.V. (2015). Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol. Izvestiya, Atmospheric and Oceanic Physics, vol. 51, № 1, pp. 1-11. DOI:10.1134/S0001433815010041.

13. Gubanova D.P., Belikov I.B., Elansky N.F., Skorokhod A.I., and Chubarova N.E. (2018). Variations in PM 2.5 Surface Concentration in Moscow according to Observations at MSU Meteorological Observatory. Atmospheric and Oceanic Optics, vol. 31, pp. 290-299. DOI:10.1134/S1024856018030065.

14. Holben B.N., Eck T.F., Slutsker I., Tanre D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y.J., Nakajima T., Lavenu F., Jankowiak I., and Smirnov A. (1998). AERONET – A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, vol. 66, № 1, pp. 1-16. DOI:10.1016/S0034-4257(98)00031-5.

15. IPCC (2007): Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., and Miller H.L. (eds.) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

16. IPCC (2013): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., and Midgley P.M. (eds.) Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535 pp.

17. Kazadzis S., Amiridis V., Kouremeti N. (2013). The Effect of Aerosol Absorption in Solar UV Radiation. In: Helmis C., Nastos P. (eds.) Advances in Meteorology, Climatology and Atmospheric Physics. Springer Atmospheric Sciences. Springer, Berlin, Heidelberg, pp. 1041-1047. DOI:10.1007/978-3-642-29172-2.

18. Kirchstetter T.W., Novakov T., and Hobbs P.V. (2004). Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J.Geophys.Res., vol. 109, № D21208, pp. 1-12. DOI:10.1029/2004JD004999.

19. Koepke P., Hess M., Schult I., and Shettle E.P. (1997). Global Aerosol Data Set. Report No. 243, Max-Planck-Institut für Meteorologie, Hamburg.

20. Kopeikin V.M., Emilenko A.S., Isakov A.A., Loskutova O.V., and Ponomareva T.Ya. (2018). Variations in soot and submicron aerosols in the Moscow region in 2014-2016. Atmospheric and Ocean Optics, vol. 31, № 1, pp. 5-10 (in Russian).

21. Kozlov V.S., Panchenko M.V., and Yausheva E.P. (2008). Mass fraction of Black Carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia. Atmospheric Environment, vol. 42, №. 11, pp. 2611-2620.

22. Kozlov V.S., Panchenko M.V. Pol'kin V.V., and Terpugova S.A. (2016). Technique for determination of the single scattering albedo of submicron aerosol in the approximation of lognormal size distribution of black carbon. Proc. SPIE 10035, 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, DOI: 10.1117/12.2247992

23. Kuznetsova I., Shalygina I., Nakhaev M., et al. (2014). Unfavorable meteorological factors for air quality Russian Hydrometeocenter Proceedings, vol. 351, pp. 154-172 (in Russian).

24. Li H., Meier F., Lee X., Chakraborty T., Liu J., Schaap M., Sodoudi S. (2018). Interaction between urban heat island and urban pollution island during summer in Berlin. Science of The Total Environment, vol. 636, pp. 818-828. DOI:10.1016/j.scitotenv.2018.04.254

25. Mosecomonitoring, 2017 (2016). Environment report in Moscow city. Ed. Kulbachevsky A.O., 363 (in Russian).

26. O’Neill N.T., Dubovik O., Eck T.F. (2001). Modified Ångström exponent for the characterization of submicrometer aerosols. App. Opt., vol. 40, № 15, pp. 2368-2374. DOI:10.1364/AO.40.002368.

27. Popovicheva O., Ivanov A., Sitnikov N., Volpert E. (2020). Black carbon in spring aerosols of Moscow urban background. DOI: DOI-10.24057/2071-9388-2019-90. 2020.

28. Rivin G.S., Rozinkina I.A., Vil’fand R.M., et al. (2015). The COSMO-Ru system of nonhydrostatic mesoscale short-range weather forecasting of the Hydrometcenter of Russia: The second stage of implementation and development. Russian Meteorology and Hydrology, vol. 40, № 6, pp. 400-410. DOI:10.3103/S1068373915060060.

29. Tegen I., Hollrig P., Chin M., Fung I., Jacob D., and Penner J. (1997). Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., vol. 102, pp. 23895-23915. DOI:10.1029/97JD01864.

30. Vil’fand R.M., Kirsanov A.A., Revokatova A.P., Rivin G.S., Surkova G.V. (2017), Forecasting the Transport and Transformation of Atmospheric Pollutants with the COSMO-ART Model. Russian Meteorology and Hydrology, vol. 42, № 5, pp. 292–298. DOI:10.3103/S106837391705003X.

31. Vogel B., Vogel H., Bäumer D., Bangert M., Lundgren K., Rinke R., and Stanelle T. (2009). The comprehensive model system COSMO-ART – Radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos. Chem. Phys., vol. 9, pp. 8661–8680. DOI:10.5194/acp-9-8661-2009.

32. Vogel B., Bäumer D., et al. (2010). COSMO-ART: Aerosols and Reactive Trace Gases within the COSMO Model. In: Baklanov А., Mahura A., Sokhi R. (eds.) Integrated Systems of Meso-meteorological and Chemical Transport Models, Springer, pp. 75-80.

33. Zawadzka O., Markowicz K. M., Pietruczuk A., Zielinski T., and Jaroslawski J. (2013). Impact of urban pollution emitted in Warsaw on aerosol properties. Atmos. Environ., vol. 69, pp. 15–28. DOI:10.1016/j.atmosenv.2012.11.065.

34. Physikalisch-Meteorologisches Observatorium Davos World Radiation Center (2017). Project, World Calibration Center – Ultraviolet. [online] Available at: [Accessed 19 Jun. 2019].

35. World Health Organization (2019). Ambient (outdoor) air quality and health. [online] Available at: [Accessed 19 Jun. 2019].


For citations:

Chubarova N.E., Androsova E.E., Kirsanov A.A., Vogel B., Vogel H., Popovicheva O.B., Rivin G.S. Aerosol and Its Radiative Effects during the Aeroradcity 2018 Moscow Experiment. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(4):114-131.

Views: 1148

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)