Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Impacts Of The Invasive FourEyed Fir Bark Beetle (Polygraphus Proximus Blandf.) On Siberian Fir (Abies Sibirica Ledeb.) Forests In Southern Siberia

https://doi.org/10.24057/2071-9388-2019-35

Abstract

The emergence and spread of non-native invasive forest insects represent a major potential threat to global biodiversity. The present study examines the current invasion of the far eastern four-eyed fir bark beetle Polygraphus proximus Blandf. in southern Siberian fir (Abies sibirica Ledeb.) forests. We collected data on 38 large sized (2500 m²) sample plots, situated in fir forests of the Tomsk region. As a direct result of the four-eyed fir bark beetle infestation, stand density decreased by 34-37%, and stand volume by 30%. The mean height, individual age and diameter at the stand level consequently increased. Our results indicated that stands with complete left-sided or normal ontogenetic structure (composed primarily of late virginal firs or firs in young reproductive stage) are more resistant to invasion by the four-eyed fir bark beetle. By contrast, fir forests characterized by more right-sided ontogenetic structure (composed primarily of mature and old reproductive firs), exhibited the least resistance and, with rare exception, degraded rapidly in response to the invasion. Our results also pointed to a mechanism that initiates invasions of the four-eyed fir bark beetle in fir stands of all types of ontogenetic structure, which is the attack of virginal trees and trees in early reproductive stages. Trees up to average diameter are the most susceptible to invasions of the bark beetle. We identified thicker bark, larger DBH and low occurrence of heart rot as the most important parameters for indicating resistance at the single tree level. DBH and bark thickness (p<0.05) correlated significantly with tree health status in infested stands. Our overall assessment of the potential natural regeneration of damaged stands is that the Siberian fir forests are resilient to invasive species and that the fir ecosystems can potentially recover from this disturbance.

About the Authors

Nikita M. Debkov
Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences
Russian Federation
Tomsk


Aleksey A. Aleinikov
Center of Forest Ecology and Productivity, Russian Academy of Sciences
Russian Federation
Moscow


Alexander Gradel
Georg-August-Universität Göttingen
Germany
Göttingen


Anatoly Yu. Bocharov
Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences
Russian Federation
Tomsk


Nina V. Klimova
Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences
Russian Federation
Tomsk


Gennady I. Pudzha
National Research Tomsk State University
Russian Federation
Tomsk


References

1. Aitken S. N., Yeaman S., Holliday J. A., Wang T., Curtis-McLane S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications, 1(1), pp. 95–111. https://doi.org/10.1111/j.1752-4571.2007.00013.x.

2. Allen C. D., Macalady A. K., Chenchoun H., Bachelet D., McDowell N., Vennetier M., … Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), pp. 660–684. https://doi.org/10.1016/j.foreco.2009.09.001.

3. Anderegg L. D. L., Anderegg W. R. L., Berry J. A. (2013). Not all droughts are created equal: translating meteorological drought into woody plant mortality. Tree Physiology, 33(7), pp. 672–683. https://doi.org/10.1093/treephys/tpt044.

4. Anuchin N. P. (1982). Forest Taxation. Moscow: Lesnaya promyshlennost'. Aukema J. E., McCullough D. G., Von Holle B., Liebhold A. M., Britton K., Frankel S. J. (2010). Historical Accumulation of Nonindigenous Forest Pests in the Continental United States. BioScience, 60(11), pp. 886–897. https://doi.org/10.1525/bio.2010.60.11.5.

5. Baranchikov Yu. N., Demidko D. A., Laptev A. V., Petko V. M. (2014). Dynamics of siberian fir dieback in the outbreak area of the four-eyed fir bark beetle. Moscow State Forest University Bulletin - Lesnoy Vestnik, 6. pp. 132–138. (in Russian).

6. Baranchikov Yu. N., Petko V. M., Astapenko S. A., Akulov E. N., Krivets S. A. (2011). four-eyed fir bark beetle – a new aggressive pest of fir in Siberia. Moscow State Forest University Bulletin - Lesnoy Vestnik, 4, pp. 78–81. (in Russian).

7. Bidart-Bouzat M. G., Imeh-Nathaniel A. (2008). Global change effects on plant chemical defenses against insect herbivores. Journal of Integrative Plant Biology, 50(11), pp. 1339– 1354. https://doi.org/10.1111/j.1744-7909.2008.00751.x.

8. Bleiker K. P., Lindgren B. S., Maclauchlan L. E. (2003). Characteristics of subalpine fir susceptible to attack by western balsam bark beetle (Coleoptera: Scolytidae). Canadian Journal of Forest Research, 33(8), pp. 1538–1543. https://doi.org/10.1139/x03-071.

9. Born W., Rauschmayer F., Bräuer, I. (2005). Economic evaluation of biological invasions—a survey. Ecological Economics, 55(3), pp. 321–336. https://doi.org/10.1016/j.ecolecon.2005.08.014.

10. Boyd I. L., Freer-Smith P. H., Gilligan C. A., Godfray H. C. J. (2013). The Consequence of Tree Pests and Diseases for Ecosystem Services. Science, 342(6160), pp. 1235773–1235773. https://doi.org/10.1126/science.1235773.

11. Brockerhoff E. G., Liebhold A. M., Jactel H. (2006). The ecology of forest insect invasions and advances in their management. Canadian Journal of Forest Research, 36(2), pp. 263–268. https://doi.org/10.1139/x06-013.

12. Carroll A.L., Taylor S.W., Regniere J., Safranyik L. (2003). Effect of climate change on range expansion by the mountain pine beetle in British Columbia. The Bark Beetles, Fuels, and Fire Bibliography. Paper 195. URL: https://ceaa-acee.gc.ca/050/documents_staticpost/cearref_21799/2876/schedule_e.pdf.

13. Donyakina S. S., Kovalev A. V., Tarasova O. V., Palnikova E. N., Astapenko S. A., Sukhovolsky V. G. (2013). The stability of fir trees to xylophages: comparison of visual and instrumental estimations. Conifers of the boreal area, XXXI (3-4), pp. 26–30. (in Russian).

14. Dordel J. (2005) Influences of mountain pine beetle (Dendroctonus ponderosae), fire and ungulate browsing on forest stand structure in the southern Canadian Rocky Mountains. Master thesis, University of British Columbia.

15. Dukes J. S., Pontius J., Orwig D., Garnas J. R., Rodgers V. L., Brazee N., … Ayres M. (2009). Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict? This article is one of a selection of papers from NE Forests 2100: A Synthesis of Climate Change Impacts o. Canadian Journal of Forest Research, 39(2), pp. 231–248. https://doi.org/10.1139/X08-171.

16. Dulamsuren Ch. (2004). Floristische Diversität, Vegetation und Standortbedingungen in der Gebirgstaiga des Westkhentej, Nordmongolei. Berichte des Forschungszentrum Waldökosysteme, Reihe A, Bd. 191, Georg-August-Universität Göttingen.

17. Evstigneev O. I., Korotkov V. N. (2016). Ontogenetic stages of trees: an overview. Russian Journal of Ecosystem Ecology, 1 (2). https://doi.org/10.21685/2500-0578-2016-2-1.

18. Fajvan M. A., Wood J. M. (1996). Stand structure and development after gypsy moth defoliation in the Appalachian Plateau. Forest Ecology and Management, 89(1–3), pp. 79– 88. https://doi.org/10.1016/S0378-1127(96)03865-0.

19. Floyd M. L., Clifford M., Cobb N. S., Hanna D., Delph R., Ford P., Turner D. (2009). Relationship of stand characteristics to drought-induced mortality in three Southwestern piñon–juniper woodlands. Ecological Applications, 19(5), pp. 1223–1230. https://doi.org/10.1890/08-1265.1.

20. Gradel A. (2017). Reaktion von Waldbeständen am Rande der südlichen Taiga auf Klimafaktoren, natürliche und waldbauliche Störungen/Response of forest stands at the edge of the southern taiga to climate factors, natural and silvicultural disturbances. Ph.D. Thesis, Georg-August-Universität Göttingen, Göttingen, Germany. Available at: https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0023-3F93-C [Accessed 30 Jan. 2019].

21. Gradel A., Voinkov A. A., Altaev A. A., Enkhtuya B. (2018). A spatio-structural analysis of intact dark taiga in the southern taiga zone and an interval assessment of a dark conifer mixed forest in the mountain forest steppe zone (Mongolia). Proceedings of the Kuban State Agrarian University, 4(73), pp. 36-40. (in Russian).

22. Holdenrieder O., Pautasso M., Weisberg P. J., Lonsdale D. (2004). Tree diseases and landscape processes: The challenge of landscape pathology. Trends in Ecology and Evolution, 19(8), pp. 446–452. https://doi.org/10.1016/j.tree.2004.06.003.

23. Hulme P. E., Pyšek P., Nentwig W., Vilà M. (2009). Will threat of biological invasions unite the european union? Science, 324(5923), pp. 40–41. https://doi.org/10.1126/science.1171111

24. James T. M. (2011). Temperature sensitivity and recruitment dynamics of Siberian larch (Larix sibirica) and Siberian spruce (Picea obovata) in northern Mongolia’s boreal forest. Forest Ecology and Management, 262(4), pp. 629–636. https://doi.org/10.1016/j.foreco.2011.04.031.

25. Jenkins M. A. (2003). Impact of the balsam woolly adelgid (Adelges piceae Ratz.) on an Abies fraseri (Pursh) Poir. dominated stand near the summit of Mount LeConte, Tennessee. Castanea, 62(2), pp. 109–118.

26. Juřička D., Novotná J., Houška J., Pařílková J., Hladký J., Pecina V., Cihlářová H., Burnog M., Elbl J., Rosická Z., Brtnický M., Kynický, J. (2018). Large-scale permafrost degradation as a primary factor in Larix sibirica forest dieback in the Khentii massif, northern Mongolia. Journal of Forestry Research, 29, pp. 1–12.

27. Katz C. (2017). Small pests, big problems: the global threat of bark beetles. Yale environment 360; Yale School of Forestry and Environment. Available at: https://e360.yale.edu/features/small-pests-big-problems-the-global-spread-of-bark-beetles [Accessed 30 Jan. 2019].

28. Kenis M., Auger-Rozenberg M.-A., Roques A., Timm, L., Péré C., Cock M. J. W., LopezVaamonde C. (2009). Ecological effects of invasive alien insects. In Ecological Impacts of Non-Native Invertebrates and Fungi on Terrestrial Ecosystems, Dordrecht: Springer Netherlands, pp. 21–45. https://doi.org/10.1007/978-1-4020-9680-8_3.

29. Kerchev I. A., Krivets S.A. (2012). The outbreak foci of Polygraphus proximus Blandf. in fir forests of Tomsk oblast. Interexpo Geo-Siberia, 4. pp. 67–72. (in Russian).

30. Kerchev I. A. (2014). Ecology of four-eyed fir bark beetle Polygraphus proximus Blandford (Coleoptera; Curculionidae, Scolytinae) in the West-Siberian region of invasion,. Russ. J. Biol. Invasions, 5(3), pp. 176–185. https://doi.org/10.1134/S2075111714030072.

31. Kharuk V. I., Antamoshkina O. A. (2017). Impact of silkmoth outbreak on taiga wildfires. Contemporary Problems of Ecology, 10(5), pp. 556–562. https://doi.org/10.1134/S1995425517050055.

32. Kharuk V. I., Im S. T., Oskorbin P. A., Petrov I. A., Ranson K. J. (2013). Siberian pine decline and mortality in southern siberian mountains. Forest Ecology and Management, 310, pp. 312–320. https://doi.org/10.1016/j.foreco.2013.08.042.

33. Kharuk V. I., Im S. T., Petrov I. A., Dvinskaya M. L., Fedotova E. V., Ranson K. J. (2017). Fir decline and mortality in the southern Siberian Mountains. Regional Environmental Change, 17(3), pp. 803–812. https://doi.org/10.1007/s10113-016-1073-5.

34. Krivets S. A., Bisirova E. M., Kerchev I. A., Pats E. N., Chernova N. A. (2015a). Transformation of taiga ecosystems in the Western Siberian invasion focus of four-eyed fir bark beetle Polygraphus proximus Blandford (Coleoptera: Curculionidae, Scolytinae). Russian Journal of Biological Invasions, 6(2), pp. 94–108. https://doi.org/10.1134/S2075111715020058.

35. Krivets S. A., Kerchev I. A., Bisirova E. M. , Pet'ko V. M. , Pashenova N. V. , Baranchikov YU. N. , Demidko D. A. (2015b). Four-eyed fir bark beetle in the forests of Siberia: distribution, biology, ecology, identification and examination of damaged plantings. Tomsk-Krasnoyarsk. (in Russian).

36. Krivolutskaya G.O. (1958). Bark beetles of Sakhalin Island. Moscow –Leningrad: Izd-vo AN SSSR. Kurentsov A.I. (1950). Pests of conifers of Primorsky Krai. Vladivostok: Dal'nevostochnyy filial AN SSSR.

37. Lyamtsev N.I., Isaev A.S. (2005). Modification of the Gypsy Moth Outbreaks Related to Environmental and Climatic Situation. Russian Journal of Forest Science, 5, pp. 3–9.

38. Makhatkov, I. D. (1991). Polivariantnost' ontogeneza Siberian fir. Byul. MOIP. Otd. Biol., 96(4), pp. 79–88. (in Russian).

39. Martinez-Vilalta J., Lloret F., Breshears D. D. (2012). Drought-induced forest decline: causes, scope and implications. Biology Letters, 8(5), pp. 689–691. https://doi.org/10.1098/rsbl.2011.1059.

40. Methodological approaches to environmental assessment of the forest canopy cover in a small river basin (2010). M: Tovarishchestvo nauchnykh izdaniy KMK. (in Russian).

41. Mitton J. B., Ferrenberg S. M. (2012). Mountain Pine Beetle Develops an Unprecedented Summer Generation in Response to Climate Warming. The American Naturalist, 179(5), E163–E171. https://doi.org/10.1086/665007.

42. Nagel W. (1995). Stoyan D./Stoyan H. Fractals, Random Shapes and Point Fields. Methods of Geometrical Statistics. John Wiley & Sons, Chichester 1994, XIV, 389 pp. Biometrical Journal, 37(8), pp. 978–978. https://doi.org/10.1002/bimj.4710370810.

43. Negrobov O.P. 1970. A contribution to the knowledge of Medetera of Japan (Dolichopodidae, Diptera) // Insecta Matsumurana. Suppl.9. P.1–7.

44. Ostry M. E., Laflamme G., Katovich S. A. (2010). Silvicultural approaches for management of eastern white pine to minimize impacts of damaging agents. Forest Pathology, 40(3–4), pp. 332–346. https://doi.org/10.1111/j.1439-0329.2010.00661.x.

45. Palnikova E.N., Meteleva M.K., Sukhovolsky V.G. (2006). Influence of modifying factors on the forest insect population dynamics and development of their outbreaks. Russian Journal of Forest Science, 5, pp. 29–35. (in Russian).

46. Petercord R., Lemme H. (2019). Der Nordische Fichtenborkenkäfer. LWL aktuell 120. Available at: http://www.lwf.bayern.de/waldschutz/monitoring/211872/index.php (in German) [Accessed 28 Feb. 2019].

47. Pobedinsky A. V. (1966). Study of reforestation processes. M. (in Russian). Poland T. M., McCullough D. G. (2006). Emerald ash borer: invasion of the urban forest and the threat to North America’s ash resource. Journal of Forestry, April-May, pp. 118-124.

48. Rozendaal D. M. A., Kobe R. K. (2016). A Forest Tent Caterpillar Outbreak Increased Resource Levels and Seedling Growth in a Northern Hardwood Forest. PLOS ONE, 11(11), e0167139. https://doi.org/10.1371/journal.pone.0167139.

49. Sanderson L. A., Mclaughlin J. A., Antunes P. M. (2012). The last great forest: a review of the status of invasive species in the North American boreal forest. Forestry, 85(3), pp. 329–340. https://doi.org/10.1093/forestry/cps033.

50. Seidl R., Rammer W., Jäger D., Lexer M. J. (2008). Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. Forest Ecology and Management, 256(3), pp. 209–220. https://doi.org/10.1016/j.foreco.2008.04.002.

51. Silverstein D. (2012). Tornadoes, sepsis, and goal-directed therapy in dogs. Journal of Veterinary Emergency and Critical Care, 22(4), pp. 395–397. https://doi.org/10.1111/j.1476-4431.2012.00784.x.

52. Small M. J., Small C. J., Dreyer G. D. (2007). Changes in a hemlock-dominated forest following woolly adelgid infestation in southern New England. The Journal of the Torrey Botanical Society, 132(3), pp. 458–470. https://www.jstor.org/stable/20063785.

53. Smirnova O.V., Bobrovsky M.V., Khanina L.G., Zaugolnova L.B., Turubanova S.A., Potapov P.V., Yaroshenko A.Yu., Smirnov V.E. (2017) Methods of Investigation. Published in: Smirnova O. V., Bobrovsky M. V., Khanina, L. G. (Eds.). European Russian Forests (Vol. 15). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-024-1172-0.

54. Stark V.N. (1952). Bark beetles. In: USSR fauna. Coleoptera. Vol. XXXI. Moscow – Leningrad: Izd-vo AN SSSR.

55. Straw N. A., Williams D. T., Kulinich O., Gninenko Y. I. (2013). Distribution, impact and rate of spread of emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae) in the Moscow region of Russia. Forestry, 86(5), pp. 515–522. https://doi.org/10.1093/forestry/cpt031.

56. Sheskin JD (2004). Handbook of parametric and nonparametric statistical procedures. Third edition. Florida, CRC Press. Svalov S. N. (1985). Application of statistical methods in forestry. Forest Science and Forestry, 4, pp. 1–164. (in Russian).

57. Tchebakova N. M., Parfenova E. I., Soja A. J. (2011). Climate change and climate-induced hot spots in forest shifts in central Siberia from observed data. Regional Environmental Change, 11(4), pp. 817–827. https://doi.org/10.1007/s10113-011-0210-4.

58. Uspensky E. I. (1987). The forest regeneration process under the canopy of small-leaved forests of the middle Volga region. Forestry Journal, 3, pp. 116–118. (in Russian).

59. Weckel M., Tirpak J. M., Nagy C., Christie R. (2006). Structural and compositional change in an old-growth eastern hemlock Tsuga canadensis forest, 1965–2004. Forest Ecology and Management, 231(1–3), pp. 114–118. https://doi.org/10.1016/j.foreco.2006.05.022.

60. Worrall J. J., Marchetti S. B., Egeland L., Mask R. A., Eage T., Howell B. (2010). Effects and etiology of sudden aspen decline in southwestern Colorado, USA. Forest Ecology and Management, 260(5), pp. 638–648. https://doi.org/10.1016/j.foreco.2010.05.020.

61. Yamaguchi H. (1963). Survey and population studies of beetles in wind-swept areas in Hokkaido (II). Beetle infestations on wind-thrown trees int eh second year, in 195 5 //. Bull. Gov. For. Exp. Sta. Vol. 151. P. 53-73.

62. Zamolodchikov D.G. (2012). An estimate of climate related changes in tree species diversity based on the results of forest fund inventory. Biol Bull Rev, 2(2), pp. 154–163. https://doi.org/10.1134/S2079086412020119.


For citation:


Debkov N.M., Aleinikov A.A., Gradel A., Bocharov A.Y., Klimova N.V., Pudzha G.I. Impacts Of The Invasive FourEyed Fir Bark Beetle (Polygraphus Proximus Blandf.) On Siberian Fir (Abies Sibirica Ledeb.) Forests In Southern Siberia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(3):79-97. https://doi.org/10.24057/2071-9388-2019-35

Views: 134


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)