Advanced search

A Cases Study Of Mongolian Cyclogenesis During The July 2018 Blocking Events


Mongolia and Transbaikalia (M-TB) have experienced severe drought over the past 20 years due to the increased frequency of anticyclogenesis. However, in the summer of 2018, as a result of the formation of a series of cyclones over Mongolia and their move to the Transbaikalia, abnormally high precipitation was observed in the M-TB region. The dynamics of long Rossby waves and atmospheric blocking in the middle and upper troposphere were investigated to identify the causes of cyclogenesis over Mongolia. It was revealed that a sequence of events predefined the extreme precipitation in M-TB in the 2018 summer – the intensification of heat flux over the North Atlantic while maintaining cyclonic vorticity over Central Europe, the development of blocking ridges in the Urals and the Russian Far East, and an upper-level trough oriented to the eastern regions Mongolia. For a long time, the persistent advection of cold air in the rear part of the upper-level trough, as well as increased heat advection during the activation of the East Asian summer monsoon, caused meridional oriented upper-level front strengthening over the eastern regions of Mongolia and extreme precipitation.

About the Authors

Olga Yu. Antokhina
V.E. Zuev Institute of Atmospheric Optics, SB RAS
Russian Federation


Inna V. Latysheva
Irkutsk State University
Russian Federation

Vladimir I. Mordvinov
Institute of Solar-Terrestrial Physics, SB RAS
Russian Federation


1. Antokhina O.Yu., Antokhin P.N., Devyatova E.V., Mordvinov V.I. (2018a). Dynamic Processes In The Atmosphere Determining Summertime Precipitation Anomalies In The Eastern Siberia And Mongolia Fundamental and Applied Climatology 5, pp. 10-27 DOI: 10.21513/2410-8758-2018-1-10-27 (in Russian with English summary).

2. Antokhina O. Y., Antokhin P. N., Devyatova E. V., Mordvinov V. I., Martynova Yu. V. (2018b). Precipitation in the Selenga River basin during atmospheric blocking over Europe and the Russian Far East in July. IOP Conf. Series: Earth and Environmental Science 211, pp. 012054.

3. Antokhina O. Yu. (2019). Precipitation in the basin of the Selenga River Basin in July and features of large-scale atmospheric circulation over Eurasia // Geogr. and Nat. Res., 4, in press (in Russian with English summary).

4. Arkhangelsky V.L. (1956). Ways and speeds of movement of cyclones and anticyclones in Eastern Siberia and the Far East. Tr. DVNIGMI 1, pp. 14 – 23. (in Russian).

5. Barriopedro D., García-Herrera R., Lupo A. R., Hernández E. (2006). Climatology of Northern Hemisphere Blocking. Journal of Climate 19, pp. 1042–1063.

6. Berezhnykh, T.V., Marchenko O.Y., Abasov N.V., Mordvinov V.I. (2012). Changes in the summertime atmospheric circulation over East Asia and the formation of long-lasting lowwater periods within the Selenga river basin. Geogr. Nat. Resour. 33, pp. 223-229.

7. Bychkov I.V., Nikitin V.M. (2015). Water-level regulation of Lake Baikal: Problems and possible solutions. Geogr. Nat. Resour. 36, pp. 215- 224.

8. Bukhalova L.N. (1959). Southern cyclones in Transbaikalia. Tr. DVNIGMI 7, pp. 13 – 25. (in Russian).

9. Chen Shou-Jun, Lazić L. (1990). Numerical Case Study of the Altai-Sayan Lee Cyclogenesis over East Asia. Meteorology and Atmospheric Physics 42, 3-4 pp. 221–229.

10. Chen, Shou-Jun, et al. (1991). Synoptic Climatology of Cyclogenesis over East Asia, 1958- 1987. Monthly Weather Review 119, 6, pp. 1407–1418.

11. Chen H., Teng F., Zhang W., Liao H. (2017). Impacts of Anomalous Midlatitude Cyclone Activity over East Asia during summer on the Decadal Mode of East Asian Summer Monsoon and Its Possible Mechanism. Journal of Climate. 30, pp. 739–753.

12. Coumou D., Capua G. D., Vavrus S., Wang L., Wang, S. (2018). The influence of Arctic amplification on mid-latitude summer circulation. Nature Communications 2018, 9, p. 2959, doi: 10.1038/s41467-018-05256-8.

13. (2019). North Atlantic oscillation (NAO) [on-line]. Available at: [Accessed 26.01.2019].

14. Davi, N.K., Jacoby G.C., Curtis A.E., Baatarbileg N. (2006). Extension of Drought Records for Central Asia Using Tree Rings: West-Central Mongolia. J. Climate 19, pp. 288–299. DOI

15. Davi N. K., Pederson N., Leland C., Nachin B., Suran B., Jacoby G. C. (2013). Is eastern Mongolia drying? A long-term perspective of a multidecadal trend. Water Resour. Res. 49, 1, pp. 151–158 doi:10.1029/2012WR011834.

16. Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M. A., Balsamo G., Bauer P., Bechtold P., Beljaars A. C. M., L. van de Berg, Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A. J., Haimberger L., Healy S. B., Hersbach H., Hólm E. V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A. P., Monge-Sanz B. M., Morcrette J.-J., Park B.-K., Peubey C., P. de Rosnay, Tavolato C., Thépaut J.-N., Vitart F. (2011). The ERAInterim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc. 137, pp. 553–597, doi:10.1002/qj.828.

17. Ding Y., Wang Z., Sun Y. (2008). Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol. 28, pp. 1139–1161, doi:10.1002/joc.1615.

18. Erdenebat E., Sato T. (2015). Recent increase in heat wave frequency around Mongolia: role of atmospheric forcing and possible influence of soil moisture deficit. Atmospheric Science Letters 17, pp. 135–140 DOI: 10.1002/asl.616.

19. (2018). Mongolia – Floods Prompt Rescues and Evacuations [on-line]. Available at: [Accessed 26.01.2019].

20. Frolova N. L., Belyakova P. A., Grigoriev V. Y., Sazonov A. A., Zotov L. V. , Jarsjö J. (2017). Runoff fluctuations in the Selenga River Basin. Regional Environmental Change 17, pp. 1965–1976.

21. Hessl A. E., Anchukaitis K. J., Jelsema, C., Cook B., Byambasuren O. (2018). Past and future drought in Mongolia. Science Advances 4, 3, pp. e1701832.

22. Hoskins B. J. (1991). Towards a PV-θ view of the general circulation. Tellus B: Chemical and Physical Meteorology 43, 4, pp. 27–35.

23. Iwao K., Takahashi M. (2008). A Precipitation Seesaw Mode between Northeast Asia and Siberia in Summer Caused by Rossby Waves over the Eurasian Continent Journal of Climate 21, pp. 2401–2419.

24. Iwasaki H., Nii T. (2006). The Break in the Mongolian Rainy Season and Its Relation to the Stationary Rossby Wave along the Asian Jet. Journal of Climate 19, pp. 3394–3405.

25. Karthe, D., Kasimov N. S., Chalov S. R., Shinkareva G. L., Malsy M., Menzel L., Theuring P., Hartwig M., Schweitzer C., Hofmann J., Priess J., Lychagin M. (2014). Integrating Multi-Scale Data For The Assessment Of Water Availability And Quality In The Kharaa - Orkhon - Selenga River System. Geography, Environment, Sustainability. 7, 3, pp. 65–86, doi:10.24057/2071-9388-2014-7-3-65-86.

26. Kasimov N., Karthe D., Chalov S. (2017). Environmental change in the Selenga River—Lake Baikal Basin. Regional Environmental Change. 17, 7 pp. 1945–1949.

27. Khromov S. P. Monsoon in the general circulation of the atmosphere (1956). In book: A.I. Voeikov and modern problems of climatology Hydrometeorological Publishing 283 (in Russian).

28. Kunz A., Konopka P., Müller R. and Pan L. L. (2011). Dynamical tropopause based on isentropic potential vorticity gradients. Journal of Geophysical Research 116, pp. D01110.

29. Kwon M., Jhun J.-G., Ha K.-J. (2007). Decadal change in East Asian summer monsoon circulation in the mid-1990s. Geophysical Research Letters 34, pp. L21706.

30. Lejenäs H., Øakland H. (1983). Characteristics of Northern Hemisphere blocking as determined from long time series of observational data. Tellus 35A, pp. 350–362.

31. Li J., Cook E. R., Chen F., Davi N., D'arrigo R., Gou X., Wright W. E., Fang K., Jin L., Shi J. Yang T. (2009). Summer monsoon moisture variability over China and Mongolia during the past four centuries. Geophys. Res. Lett. 36, pp. L22705, doi:10.1029/2009GL041162.

32. Li J., Ruan C. (2018). The North Atlantic–Eurasian teleconnection in summer and its effects on Eurasian climates. Environmental Research Letters 13, 2, P. 024007.

33. Loschenko K. A., Latyshev S.V., Potemkin V.L. (2010). Monitoring of dangerous weather phenomena in the territory of the Irkutsk Region. Bulletin of ISTU 3, 43, pp. 30–35.

34. Marchenko O.Yu., Berezhnykh T.V., Mordvinov V.I. (2012). Extremely water content of the Selenga River and features of the summer atmospheric circulation. Meteorology and hydrology 10, pp. 81-93 (in Russian with English summary).

35. Masato G., Hoskins B.J., Woollings T.J. (2011). Wave-breaking characteristics of midlatitude blocking. Quarterly Journal of the Royal Meteorological Society 138, 666, pp. 1285–1296.

36. Meyer-Christoffer A., Becker A., Finger P., Schneider U., Ziese M. (2018). GPCC Climatology Version 2018 at 1.0°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges built on GTS-based and Historical Data. DOI: 10.5676/ DWD_GPCC/CLIM_M_V2018_100.

37. Access to the meteorological database (RIHMI-WDC) (in Russian) Available at [Accessed 11.08.2019].

38. Main Features Of Atmospheric Circulation (in Russian) Available at: [Accessed 26.01.2019].

39. Mokhov I.I., Semenov V.A. (2016). Weather and Climate Anomalies in Russian Regions Related to Global Climate Change. Russian Meteorology and Hydrology 41, 2, pp. 84–92.

40. Moreido V. M., Kalugin A. S. (2017). Assessing possible changes in Selenga R. water regime in the XXI century based on a runoff formation model. Water Resources 44, pp. 390–398.

41. Obyazov V. A. (2015). Regional response of surface air temperatures to global changes: Evidence from the Transbaikal region. Doklady Earth Sciences 461, pp. 375–378 DOI: 10.1134/S1028334X15040054.

42. Palmén Eric H., Newton C.W. (1969). Atmospheric circulation systems: their structure and physical interpretation. Acad. Press, 606.

43. Sato N., Takahashi M. (2006). Dynamical Processes Related to the Appearance of QuasiStationary Waves on the Subtropical Jet in the Midsummer Northern Hemisphere. Journal of Climate 19, pp. 1531–1544.

44. Schamm K., Ziese M., Becker A., Finger P., Meyer-Christoffer A., Schneider U., Schröder M., Stender P. (2014).Global gridded precipitation over land: a description of the new GPCC First Guess Daily product. Earth System Science Data 6, 1, pp. 49–60.

45. Schubert S. D., Wang H., Koster R. D., Suarez M. J., Groisman P. Y. (2014). Northern Eurasian Heat Waves and Droughts. Journal of Climate 27, pp. 3169–207 doi: 10.1175/JCLID-13-00360.1.

46. Flood emergency declared in Trans-Baikal Region Available at: [Accessed 26.01.2019].

47. Tibaldi S., Molteni F. (1990). On the operational predictability of blocking. Tellus V.42A, pp. 343–365.

48. Wang X., Zhai P., Wang C. (2009). Variations in extratropical cyclone activity in northern East Asia Advances in Atmospheric Sciences 26, pp. 471–479.

49. Wirth V., Riemer M., Chang E. K. M., Martius O. (2018). Rossby Wave Packets on the Midlatitude Waveguide — A Review. Monthly Weather Review 146, pp. 1965–2001.

50. Yihui D., Chan J. C. L. (2005). The East Asian summer monsoon: an overview. Meteorology and Atmospheric Physics 89, pp. 117–42.

51. Zhang L., Zhou T. (2015). Decadal change of East Asian summer tropospheric temperature meridional gradient around the early 1990s Science China Earth Sciences 58, pp. 1609– 1622.

52. Zhu C., Wang B., Qian W., Zhang B. (2012). Recent weakening of northern East Asian summer monsoon: A possible response to global warming. Geophysical Research Letters 39, pp. L09701.


For citations:

Antokhina O.Yu., Latysheva I.V., Mordvinov V.I. A Cases Study Of Mongolian Cyclogenesis During The July 2018 Blocking Events. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(3):66-78.

Views: 909

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)