Advanced search

Mining as a catalyst of overgrazing resulting in risk of forest retreat, Erdenet Mongolia

Full Text:


This paper provides information on long-term suppression of natural forest regeneration due to the livestock grazing in the vicinity of one of the world largest open-pit ore mine close the city of Erdenet in Mongolia. The area is characterized by high concentration of herder’s households where the 52% were found only up to 1 km distance from the forest edge. Forest grazing causes extensive damage to seedlings and significant reduction of their growth. Within the 30–99 cm height category, up to 61% Larix sibirica, 90% Betula platyphylla and 68% Populus tremula individuals are grazingdamaged. L. sibirica and P. tremula seedlings with heights over 99 cm were absent, and no individuals of any species were found within 136–200 cm height category. In addition to the seedlings, only 7 or more meters high L. sibirica individuals are found in the forest structure, which means the absence of successfully growing forest regeneration for at least 40 years. In 2017, the defoliation of L. sibirica, reaching locally up to 100%, occurred in the stands east of the mine. Total defoliation represents a high risk of mortality of affected individuals. The stands cannot be successfully regenerated under the conditions of current intensive grazing. Mine metal stocks are calculated to provide for at least another 25 years of mining. Over that time, neither significant population decline nor decreasing grazing pressure on forests can be expected. If effective protection measures are not implemented, there is a risk of transforming threatened forest into steppe.

About the Authors

David Juřička
Mendel University in Brno
Czech Republic

Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Brno

Václav Pecina
Mendel University in Brno
Czech Republic

Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Brno

Martin Brtnický
Mendel University in Brno; Central European Institute of Technology, Brno University of Technology
Czech Republic

Faculty of Forestry and Wood Technology, Department of Geology and Pedology,


Jindřich Kynický
Central European Institute of Technology, Brno University of Technology
Czech Republic


1. Abaimov A.P. (2010). Geographical Distribution and Genetics of Siberian Larch Species. In: Osawa A., Zyryanova O.A., Matsuura Y., Kajimoto T. and Wein R.W. ed., Permafrost ecosystems: Siberian larch forests. New York: Springer, pp. 41-58. doi: 10.1007/978-1-4020-9693-8_3.

2. Acker S.A., Kertis J.A. and Pabst R.J. (2017). Tree regeneration, understory development, and biomass dynamics following wildfire in a mountain hemlock (Tsuga mertensiana) forest. Forest Ecology and Management, 384, 72-82. doi: 10.1016/j.foreco.2016.09.047.

3. Asner G.P., Elmore A.J., Olander L.P., Martin R.E. and Harris T. (2005). Grazing systems, ecosystem responses, and global change. Annu. Rev. Environ. Resour., 29, pp. 261-99. doi: 10.1146/

4. Batbayar G., Pfeiffer M., Kappas, M. and Karthe D. (2018). Development and application of GIS-based assessment of land-use impacts on water quality: A case study of the Kharaa River Basin. Ambio. doi:10.1007/s13280-018-1123-y.

5. Batkhuu N., Lee D.K. and Tsogtbaatar J. (2011). Forest and Forestry Research and Education in Mongolia. Journal of Sustainable Forestry, 30(6), 600-617. doi: 10.1080/10549811.2011.548761.

6. Bellingham P.J., Richardson S.J., Mason N.W., Veltman C.J., Allen R.B., Allen W.J., Baker. R.J. and Ramsey D.S. (2016). Introduced deer at low densities do not inhibit the regeneration of a dominant tree. Forest Ecology and Management, 364, 70-76. doi: 10.1016/j.foreco.2015.12.013.

7. Belsky A.J. and Blumenthal D.M. (1997). Effects of Livestock Grazing on Stand Dynamics and Soils in Upland Forests of the Interior West. Conservation Biology, 11, pp. 315-327. doi: 10.1046/j.1523-1739.1997.95405.x.

8. Berger J., Buuveibaatar B. and Mishra C. (2013). Globalization of the Cashmere Market and the Decline of Large Mammals in Central Asia. Conservation Biology, 27(4), 679-689. doi:10.1111/cobi.12100.

9. Bondarev A. (1997). Age distribution patterns in open boreal Dahurican larch forests of Central Siberia. Forest Ecology and Management, 93(3), pp. 205-214. doi: 10.1016/S0378-1127(96)03952-7.

10. Buffum B., Gratzer G. and Tenzin Y. (2009). Forest grazing and natural regeneration in a late successional broadleaved community forest in Bhutan. Mountain Research and development, 29(1), pp. 30-35. doi: 10.1659/mrd.991.

11. Dulamsuren C., Hauck M. and Leuschner C. (2010). Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey, Mongolia. Global Change Biology, 16(11), pp. 3024-3035. doi: 10.1111/j.1365-2486.2009.02147.x.

12. Dulamsuren C., Hauck M., Leuschner H.H. and Leuschner C. (2010a). Gypsy moth-induced growth decline of Larix sibirica in a forest-steppe ecotone. Dendrochronologia, 28(4), pp. 207-213. doi: 10.1016/j.dendro.2009.05.007.

13. Enkhbayar T. (2019). Urban Housing Policy and Country Profile of MONGOLIA. [online] Available at: [Accessed 30 Jan. 2019].

14. FAO (2015) Mongolia - Global Forest Resources Assessment 2015 – Country Report. [online] Available at: [Accessed 4 Jan. 2019].

15. Fernández-Giménez M., Batjav B. and Baival B. (2012). Lessons from the dzud: adaptation and resilience in Mongolian pastoral socio-ecological systems. Washington, World Bank.

16. Hauck M., Dulamsuren C. and Heimes C. (2008). Effects of insect herbivory on the performance of Larix sibirica in a foreststeppe ecotone. Environmental and Experimental Botany, 62(3), pp. 351-356. doi: 10.1016/j.envexpbot.2007.10.025.

17. Hauck M. and Lkhagvadorj D. (2013). Epiphytic lichens as indicators of grazing pressure in the Mongolian forest-steppe. Ecological Indicators, 32, pp. 82-88. doi: 10.1016/j.ecolind.2013.03.002.

18. Hédl R., Svátek M., Dančák M., Rodzay A.W., Salleh A.B. and Kamariah A.S. (2009). A new technique for inventory of permanent plots in tropical forests: a case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam. Blumea-Biodiversity. Evolution and Biogeography of Plants, 54(1-3), pp. 124-130. doi: 10.3767/000651909X475482.

19. James T.M. (2011). Temperature sensitivity and recruitment dynamics of Siberian larch (Larix sibirica) and Siberian spruce (Picea obovata) in northern Mongolia’s boreal forest. Forest Ecology and Management, 262(4), pp. 629-636. doi: 10.1016/j.foreco.2011.04.031.

20. Janzen J. (2005). Mobile livestock-keeping in Mongolia: present problems, spatial organization, interactions between mobile and sedentary population groups and perspectives for pastoral development. Senri. Ethnol. Stud., 69, pp. 69-97. doi: 10.15021/00002641.

21. Jardon Y., Filion L. and Cloutier C. (1994). Long-term impact of insect defoliation on growth and mortality of eastern larch in boreal Québec. Ecoscience, 1(3), pp. 231-238. doi: 10.1080/11956860.1994.11682247.

22. Juřička D., Novotná J., Houška J., Pařílková J., Hladký J., Pecina V., Cihlářová H., Burnog M., Elbl J., Rosická Z., Kynický J. and Brtnický M. (2018). Large-scale permafrost degradation as a primary factor in Larix sibirica forest dieback in the Khentii massif, northern Mongolia. Journal of Forestry Research, 88, pp. 1-12. doi: 10.1007/s11676-018-0866-4.

23. Karthe D., Heldt S., Houdret A. and Borchardt D. (2015). IWRM in a country under rapid transition: lessons learnt from the Kharaa River Basin, Mongolia. Environmental Earth Sciences, 73(2), 681-695. doi:10.1007/s12665-014-3435-y.

24. Kharuk V.I., Petrov I.A., Dvinskaya M.L., Im, S.T. and Shushpanov A.S. (2018). Comparative Reaction of Larch (Larix sibirica Ledeb.) Radial Increment on Climate Change in the Forest Steppe and Highlands of Southern Siberia. Contemporary Problems of Ecology, 11(4), pp. 388-395. doi: 10.1134/S1995425518040042.

25. Khishigjargal M., Dulamsuren Ch., Lkhagvadorj D., Leuschner Ch. and Hauck M. (2013). Contrasting responses of seedling and sapling densities to livestock density in the Mongolian forest-steppe. Plant Ecology, 214(11), pp. 1391-1403. doi: 10.1007/s11258-013- 0259-x.

26. Koizumi A., Takata K., Yamashita K. and Nakada R. (2003). Anatomical characteristics and mechanical properties of Larix sibirica grown in south-central Siberia. IAWA journal, 24(4), pp. 355-370. doi: 10.1163/22941932-90000341.

27. Kusbach A., Štěrba T., Smola M., Novák J., Lukeš P., Strejček R., Škoda A., Bažant V. and Pondělíčková A. (2017). Development of forests and the gene pool of local forest tree ecotypes in Mongolia. part: Development of forests and landscape in Mongolia, silviculture, urban forestry, public relation. Proceedings of the seminar, Sharyn Gol/Darkhan, Mongolia, September 2017. Project CzDA-RO-MN-2014-6-31210. ÚHÚL Brandýs nad Labem, Czech Republic 2017. ISBN 978-80-88184-12-6.

28. Lkhagvadorj D., Hauck M., Dulamsuren C. and Tsogtbaatar J. (2013). Pastoral nomadism in the forest-steppe of the Mongolian Altai under a changing economy and a warming climate. Journal of Arid Environments, 88, pp. 83-89. doi: 10.1016/j.jaridenv.2012.07.019.

29. Ludwig R., Dorjsuren Ch. and Baatarbileg N. (2014). Manual for multipurpose national forest inventory field assessment. Ulaanbaatar: Internationale Zusammenarbeit (GIZ) GmbH.

30. Maasri A. and Gelhaus J. (2011). The new era of the livestock production in Mongolia: Consequences on streams of the Great Lakes Depression. Science of The Total Environment, 409(22), pp. 4841-4846. doi: 10.1016/j.scitotenv.2011.08.005.

31. Marin A. (2010). Riders under storms: Contributions of nomadic herders’ observations to analysing climate change in Mongolia. Global Environmental Change, 20(1), pp. 162-176. doi: 10.1016/j.gloenvcha.2009.10.004.

32. Menzel L., Hofmann J. and Ibisch R. (2011). Untersuchung von Wasserund Stoffflüssen als Grundlage für ein Integriertes Wasserressourcen – Management im Kharaa-Einzugsgebiet (Mongolei). Hydrologie und Wasserbewirtschaftung, 55(2), 88-103.

33. MET (2019) Multipurpose National Forest Inventory 2nd edition. [online] Available at: [Accessed 7 Jan. 2019].

34. Mongolian statistics information service (2019). Number of livestock. [online] Available at: [Accessed 9 Jan. 2019].

35. Mühlenberg M., Appelfelder J., Hoffmann H., Ayush E. and Wilson K. (2012). Structure of the montane taiga forests of West Khentii, Northern Mongolia. Journal of forest science, 58(2), pp. 45-56. doi: 10.17221/97/2010-JFS.

36. National Statistics Office of Mongolia (2019). Number of livestock, by type, by region, bag, soum, aimag and the Capital. [online] Available at: ID=DT_NSO_1001_021V1 [Accessed 7 Jan. 2019].

37. Oyuntuya S., Dorj B., Shurentsetseg B. and Bayarjargal E. (2015). Agrometeorological information for the adaptation to climate change. In: Badmaev N.B. and Khutakova C.B., eds., Soils of Steppe and Forest Steppe Ecosystems of Inner Asia and Problems of Their Sustainable Utilization, 1st ed. Ulan-Ude: Buryat State Academy of Agriculture, pp. 135-140. doi: 10.1016/S0168-1923(00)00110-6.

38. Pejchal M. and Šimek P. (2012). Evaluation of potential of woody species vegetation components in objects of landscapearchitecture. Acta Universitatis Agriculturae et Silviculturae Mendelianae. Brunensis, 60(24), pp. 199-204. doi: 10.11118/actaun201260080199.

39. Pejchal M. and Šimek P. (2015). Methodology of wood evaluation for monument care supplies (certified methodology). Mendel University in Brno, Lednice, pp. 29-53 (in Czech).

40. Priess J., Schweitzer C., Batkhishig O., Koschitzki T. and Wurbs D. (2015): Impacts of land-use dynamics on erosion risks and water managementin Northern Mongolia. Environmental Earth Sciences, 73(2), pp. 697-708 doi: 10.1007/s12665-014-3380-9.

41. Quandal (2017). Population of Erdenet. [online] Available at: [Accessed 9 Jan. 2019].

42. Reimoser F., Armstrong H. and Suchant R. (1999). Measuring forest damage of ungulates: what should be considered. Forest Ecology and Management, 120(1), pp. 47-58. doi: org/10.1016/S0378-1127(98)00542-8.

43. Saizen I., Maekawa A. and Yamamura N. (2010). Spatial analysis of time-series changes in livestock distribution by detection of local spatial associations in Mongolia. Applied Geography, 30(4), pp. 639-1304. doi: 10.1016/j.apgeog.2010.01.002.

44. Sankey T.T., Montagne C., Graumlich L., Lawrence R. and Nielsen J. (2006). Lower forest– grassland ecotones and 20th Century livestock herbivory effects in northern Mongolia. Forest Ecology and Management, 233(1), pp. 36-44. doi: 10.1016/j.foreco.2006.05.070.

45. Sato T., Kimura F. and Kitoh A. (2007). Projection of global warming onto regional precipitation over Mongolia using a regional climate model. Journal of Hydrology, 333(1), pp. 144-154. doi: 10.1016/j.jhydrol.2006.07.023.

46. Seltmann R., Gerel O. and Kirwin D. (2004). Geodynamics and Metallogeny of Mongolia with a special emphasis on copper and gold deposits. London: IAGOD.

47. Sternberg T. (2008). Environmental challenges in Mongolia’s dryland pastoral landscape. Journal of Arid Environments, 72(7), pp.1294-1304. doi:10.1016/j.jaridenv.2007.12.016.

48. The Global Economy (2019). Mongolia: GDP share of agriculture. [online] Available at: [Accessed 7 Jan. 2019].

49. The World Bank (2019). World Development Indicators. [online] Available at: [Accessed 7 Jan. 2019].

50. Time and Date (2019). Climate & Weather Averages in Erdenet, Mongolia. [online] Available at: [Accessed 4 Jan. 2019].

51. Tsogtbaatar J. (2004). Deforestation and reforestation needs in Mongolia. Forest Ecology and Management, 201(1), pp. 57-63. doi: 10.1016/j.foreco.2004.06.011.

52. Ykhanbai H. (2010). Mongolia forestry outlook study. Asia-pacific forestry sector outlook study II: working paper no. APFSOS II/WP/2009/21, Retrieved 2010. [online] Available at: [Accessed 3 Jan. 2019].

53. Yoshihara Y., Chimeddorj B., Buuveibaatar B., Lhagvasuren B. and Takatsuki S. (2008). Effects of livestock grazing on pollination on a steppe in eastern Mongolia. Biological Conservation, 141(9), pp. 2376-2386. doi: 10.1016/j.biocon.2008.07.004.

For citation:

Juřička D., Pecina V., Brtnický M., Kynický J. Mining as a catalyst of overgrazing resulting in risk of forest retreat, Erdenet Mongolia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(3):184-198.

Views: 37

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)