Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Biogeochemical specialization of macrophytes and their role as a biofilter in the Selenga delta

https://doi.org/10.24057/2071-9388-2019-103

Full Text:

Abstract

This study aims to evaluate the biofiltration ability of higher aquatic vegetation of the Selenga delta as a barrier for heavy metals and metalloids (HMM) flows into the Lake Baikal. Main aquatic vegetation species have been collected from deltaic channels and inner lakes: Nuphar pumila, Potamogeton perfoliatus, P. pectinatus, P. natans, P. friesii, Butomus umbellatus, Myriophyllum spicatum, Ceratophyllum demersum, Phragmites australis. Analysis of the obtained data showed that regardless of the place of growth hydatophytes spiked water-milfoil (M. spicatum) and the fennel-leaved pondweed (P. pectinatus) most actively accumulate metals. Opposite tendencies were found for helophytes reed (Ph. australis) and flowering rush (B. umbellatus), which concentrate the least amount of elements. This supports previous findings that the ability to concentrate HMM increases in the series of surface – floating – submerged plants. Regarding river water, the studied macrophyte species are enriched with Mn and Co, regarding suspended matter – Mo, Mn and B, regarding bottom sediments – Mn, Mo and As. We identified two associations of chemical elements: S-association with the predominant suspended form of migration (Be, V, Co, Ni, W, Pb, Bi, Mn, Fe and Al) and D-association with the predominant dissolved form of migration (B, U, Mo, Cr, Cu, Zn, As, Cd, Sn and Sb). Due to these associations three groups of macrophytes were distinguished – flowering rush and reed with a low HMM content; small yellow pond-lily and common floating pondweed with a moderate accumulation of S-association and weak accumulation of D-association elements; and clasping-leaved pondweed, fennel-leaved pondweed, and pondweed Friesii accumulating elements of both S and D groups. The results suggest that macrophytes retain more than 60% of the total Mn flux that came into the delta, more than 10% – W, As, and from 3 to 10% B, Fe, Co, Mo, Cd, V, Ni, Bi, Be, Cu, Zn, Cr, U, Al. The largest contribution is made by the group of hydatophytes (spiked water-milfoil and pondweed), which account for 74 to 96% of the total mass of substances accumulated by aquatic plants.

About the Authors

G. L. Shinkareva
Lomonosov Moscow State University
Russian Federation
Leninskie Gory, Moscow


M. Yu. Lychagin
Lomonosov Moscow State University
Russian Federation
Leninskie Gory, Moscow


M. K. Tarasov
Lomonosov Moscow State University
Russian Federation
Leninskie Gory, Moscow


J. Pietroń
WSP Sverige AB
Sweden
Ullevigatan 19, Gothenburg, 411 40


M. A. Chichaeva
Peoples Friendship University of Russia (RUDN University)
Russian Federation
6 Miklukho-Maklaya St., Moscow


S. R. Chalov
Lomonosov Moscow State University
Russian Federation
Leninskie Gory, Moscow


References

1. Baldantoni D., Alfani A., Di Tommasi P., Bartoli G. and Virzo De Santo A. (2004). Assessment of macro and microelement accumulation capability of two aquatic plants. Environmental Pollution, 130, pp. 149-156. doi: 10.1016/j.envpol.2003.12.015

2. Brekhovskikh V.F., Volkova Z.V. and Savenko A.V. (2009). Higher aquatic vegetation and accumulation processes in the delta of the river Volga. Arid ecosystems, 15(3(39)), pp. 34- 45. (In Russian)

3. Carbiener R., Trémolières M., Mercier J. L. and Ortscheit A. (1990). Aquatic macrophyte communities as bioindicators of eutrophication in calcareous oligosaprobe stream waters (Upper Rhine plain, Alsace). Vegetatio, 86(1), pp. 71-88. doi: 10.1007/BF00045135

4. Chalov S., Bazilova V. and Tarasov M. (2017). The balance of suspended sediment in the Selenga delta at the end of the 20th - beginning of the 21st centuries: modeling according to LANDSAT images. Water resources, 44(3), pp. 332-339. (In Russian). doi: 10.7868/S0321059617030075

5. Chalov S., Jarsjö J., Kasimov N., Romanchenko A., Pietroń J., Thorslund J. and Promakhova E. (2015). Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia. Environmental Earth Sciences, 72(2), pp. 663-680. doi: 10.1007/s12665-014-3106-z

6. Chalov S., Thorslund J., Kasimov N., Aybullatov D., Ilyicheva E., Karthe D., Kositsky A., Lychagin M., Nittrouer J., Pavlov M., Pietron J., Shinkareva G., Tarasov M., Garmaev E., Akhtman Y. and Jarsjö J. (2017). The Selenga River delta: a geochemical barrier protecting Lake Baikal waters. Regional environmental change, 17(7), pp. 2039-2053. doi: 10.1007/s10113-016-0996-1

7. Chaplin G. and Valentine J. (2009). Macroinvertebrate production in the submerged aquatic vegetation of the Mobile–Tensaw Delta: effects of an exotic species at the base of an estuarine food web. Estuaries and Coasts, 32(2), pp. 319-332. doi: 10.1007/s12237-008-9117-9

8. Chepinoga V. (2012). Wetland vegetation database of Baikal Siberia (WETBS). Biodiversity & Ecology, 4, p. 311. doi: 10.7809/b-e.00107

9. Chepinoga V. and Rosbach S. (2012). Aquatic vegetation of Lemnetea class on the territory of Baikal Siberia. Russian vegetation, 21, pp. 106-123. (In Russian)

10. Coops H., Hanganu J., Tudor M. and Oosterberg W. (1999). Classification of Danube Delta lakes based on aquatic vegetation and turbidity. Hydrobiologia, 415, pp. 187-191. doi: 10.1023/A:1003856927865

11. Cubero-Castan M., Constantin D., Barbieux K., Nouchi V., Akhtman Y. and Merminod B. (2015). A new smoothness based strategy for semi-supervised atmospheric correction: application to the Léman-Baïkal campaign. 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, EPFL-CONF, pp. 1-4. doi: 10.1109/WHISPERS.2015.8075379

12. Cui B., Tang N., Zhao X. and Bai J. (2009). A management-oriented valuation method to determine ecological water requirement for wetlands in the Yellow River Delta of China. Journal for Nature Conservation, 17(3), pp. 129-141. doi: 10.1016/j.jnc.2009.01.003

13. Dgebuadze Y., Dorofeyuk N. and Krylov A. (2010). Contributions of Russian Scientists to the Research of Aquatic Ecosystems in Mongolia. Mongolian Journal of Biological Sciences, 8(1), pp. 59-69. doi: 10.22353/mjbs.2010.08.07

14. Dong T., Il'icheva E., Nittrouer J. and Pavolv M. (2013). Morphology and sediment transport dynamics of the Selenga River delta, Lake Baikal, Russia. In AGU Fall Meeting Abstracts.

15. Favas P., Pratas J. and Prasad M. (2012). Accumulation of arsenic by aquatic plants in largescale field conditions: opportunities for phytoremediation and bioindication. Science of the Total Environment, 433, pp. 390-397. doi: 10.1016/j.scitotenv.2012.06.091

16. Favas P., Pratas J., Varun M., D'Souza R. and Paul M. (2014). Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Science of the Total Environment, 470, pp. 993-1002. doi: 10.1016/j.scitotenv.2013.10.067

17. Guittonny-Philippe A., Masotti V., Höhener P., Boudenne J., Viglione J. and Laffont-Schwob I. (2014). Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: A review to overcome obstacles and suggest potential solutions. Environment International, 64, pp. 1-16. doi: 10.1016/j.envint.2013.11.016

18. Il'icheva E. (2015). Runoff in the river delta Selenga. Materials of the XV meeting of geographers of Siberia and the Far East. Ulan-Ude. Irkutsk: Institute of Geography named after V.B. Sochava SB RAS. pp. 91-93. (In Russian)

19. Iqbal I. (2010). The Bengal Delta: Ecology, state and social change, 1840–1943. Springer. Jarsjö J., Chalov S., Pietroń J., Alekseenko, A. and Thorslund, J. (2017). Patterns of soil contamination, erosion and river loading of metals in a gold mining region of northern Mongolia. Regional environmental change, 17(7), pp. 1991-2005. doi: 10.1007/s10113-017-1169-6

20. Kabata-Pendias A. and Pendias H. (1984). Trace elements in soils and plants. Boca Raton: CRC Press.

21. Kasimov N., Kosheleva N., Lychagin M. et al. (2019). Environmental Atlas-monograph “Selenga-Baikal”. Moscow: Faculty of Geography, MSU. Available at: https://www.researchgate.net/publication/335567904_Environmental_Atlas-monograph_SelengaBaikal. (In Russian)

22. Katanskaya V. (1981). Higher aquatic vegetation of the continental reservoirs of the USSR. Study methods. Leningrad: Nauka. (In Russian)

23. Keskinkan O., Goksu M., Basibuyuk M. and Forster C. (2004). Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technology, 92 (2), pp. 197-200. doi: 10.1016/j.biortech.2003.07.011

24. Khazheeva Z. and Pronin N. (2007). The influence of Canadian Elodea on the chemical composition of water and bottom sediments in the Selenga river delta. Bulletin of BSU, 3, pp. 177-179. (In Russian)

25. Khedr A. and El-Demerdash M. (1997). Distribution of aquatic plants in relation to environmental factors in the Nile Delta. Aquatic Botany, 56(1), pp. 75-86. doi: 10.1016/S0304-3770(96)01090-X

26. Korytny L., Il’icheva E., Pavlov M. and Amosova I. (2012). Hydrologo-morphological approach to regionalization of the Selenga river basin. Geography and Natural Resources, 33(3), pp. 212-217. doi: 10.1134/S1875372812030055

27. Kröger R., Moore M., Locke M., Cullum R., Steinriede Jr., R., Testa III S., Bryant C. and Cooper C. (2009). Evaluating the influence of wetland vegetation on chemical residence time in Mississippi Delta drainage ditches. Agricultural Water Management, 96(7), pp. 1175-1179. doi: 10.1016/j.agwat.2009.03.002

28. Lane C.R., Anenkhonov O., Liu H., Autrey B.C. and Chepinoga V. (2015). Classification and inventory of freshwater wetlands and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using high-resolution satellite imagery. Wetlands Ecology and Management, 23(2), pp. 195-214. doi: 10.1007/s11273-014-9369-z

29. Leto C., Tuttolomondo T., La Bella S., Leone R. and Licata M. (2013). Effects of plant species in a horizontal subsurface flow constructed wetland–phytoremediation of treated urban wastewater with Cyperus alternifolius L. and Typha latifolia L. in the West of Sicily (Italy). Ecological Engineering, 61, pp. 282-291. doi: 10.1016/j.ecoleng.2013.09.014

30. Lychagina N., Kasimov N. and Lychagin M. (1998). Biogeochemistry of macrophytes of the Volga delta. Moscow: Geography Department of Moscow State University. (In Russian)

31. Malsy M, Heinen M, aus der Beek T. and Flörke M. (2013). Water resources and socioeconomic development in a water scarce region on the example of Mongolia. Geo-Öko, 34 (1-2), pp. 27-49

32. Nepf H. (2012). Flow and transport in regions with aquatic vegetation. Annual review of fluid mechanics, 44, pp. 123-142. doi: 10.1146/annurev-fluid-120710-101048

33. Outridge P. and Noller B. (1991). Accumulation of toxic trace elements by freshwater vascular plants. Reviews of Environmental Contamination and Toxicology. New York: Springer. doi: 10.1007/978-1-4612-3196-7_1

34. Pakusina A., Platonova T., Lobarev S. and Smirenski S. (2018). Chemical and Ecological Characteristics of Lakes Located in the Muraviovka Park. Asian Journal of Water, Environment and Pollution, 15(4), pp. 27-34. doi: 10.3233/AJW-180054

35. Patel D. and Kanungo V. (2010). Phytoremediation potential of duckweed (Lemna minor L. a tiny aquatic plant) in the removal of pollutants from domestic wastewater with special reference to nutrients. Bioscan, 5(3), pp. 355-358.

36. Pietroń J. (2017). Sediment transport from source to sink in the Lake Baikal basin: Impacts of hydroclimatic change and mining (Doctoral dissertation, Department of Physical Geography, Stockholm University).

37. Pietroń J., Chalov S., Chalova A., Alekseenko A. and Jarsjö J. (2017). Extreme spatial variability in riverine sediment load inputs due to soil loss in surface mining areas of the Lake Baikal basin. Catena, 152, pp. 82-93. doi: 10.1016/j.catena.2017.01.008

38. Pietroń J., Nittrouer J., Chalov S., Dong T., Kasimov N., Shinkareva G. and Jarsjö J. (2018). Sedimentation patterns in the Selenga River delta under changing hydroclimatic conditions. Hydrological processes, 32(2), pp. 278-292. doi: 10.1002/hyp.11414

39. Quan W., Han J., Shen A., Ping X., Qian P., Li C., Shi L. and Chen Y. (2007). Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Marine Environmental Research, 64, pp. 21-37. doi: 10.1016/j.marenvres.2006.12.005

40. Rai P. (2009). Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Critical Reviews in Environmental Science and Technology, 39(9), pp. 697- 753. doi: 10.1080/10643380801910058

41. Reay P. (1972). The accumulation of arsenic from arsenic-rich natural waters by aquatic plants. Journal of applied ecology, 9(2), pp. 557-565. doi: 10.2307/2402453

42. Rogozin A. (1981). The history of the relief development of the Selenginsky coast zone of the Lake Baikal. Fishery value of the coastal zone of the Lake Baikal. Irkutsk. pp. 3-18. (In Russian)

43. Sawidis T., Chettri M., Papaionnou A., Zachariadis G. and Stratis J. (2001). A study of metal distribution from lignite fuels using trees as biological monitors. Ecotoxicology and Environmental Safety, 48, pp. 27-35. doi: 10.1006/eesa.2000.2001

44. State report “The state of the Lake Baikal and measures for its protection in 2013”. (2014). Irkutsk: Siberian branch of the Federal State-Funded Scientific-Practical Enterprise “Rosgeolfond”. (In Russian)

45. Sviridenko B., Murashko Yu., Sviridenko T., Efremov A. and Tokar O. (2017). Content of heavy metals in ecotopes of hydromacrophytes of the West Siberian plain. Bulletin of Surgut State University, (4), pp. 81-96. (In Russian)

46. Sun H., Wang Z., Gao P. and Liu P. (2013). Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta physiologiae plantarum, 35(2), pp. 355-364. doi: 10.1007/s11738-012-1078-8

47. Thorslund J., Jarsjö J., Belozerova E. and Chalov S. (2012). Assessment of the gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case. Journal of Environmental Monitoring, 14, pp. 2780-2792. doi: 10.1039/C2EM30643C

48. Thorslund J., Jarsjö J., Jaramillo F., Jawitz J., Manzoni S., Basu N., Chalov S., Cohen M., Creed I., Goldenberg R. and Hylin A. (2017). Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering, 108, pp. 489-497. doi: 10.1016/j.ecoleng.2017.07.012

49. Tkachenko A. (2011). Geochemistry of aquatic landscapes of the Volga estuary region. PhD thesis synopsis. Moscow: Lomonosov Moscow State University (In Russian)

50. Tkachenko A., Gerasimova M., Lychagin M., Kasimov N. and Kroonenberg S. (2016) Bottom sediments in deltaic shallow-water areas – are they soils? Geography, Environment, Sustainability, 9(3), pp. 39-52. doi: 10.15356/2071-9388_03v09_2016_03

51. Tulokhonov A. (2001). Field environmental workshop for students of natural sciences. UlanUde: Publishing House of the BSC SB RAS. (In Russian)

52. Törnqvist R., Jarsjö J., Pietroń J., Bring A., Rogberg P., Asokan S. and Destouni G. (2014). Evolution of the hydro-climate system in the Lake Baikal basin. Journal of Hydrology, 519, pp. 1953-1962. doi: 10.1016/j.jhydrol.2014.09.074

53. Underwood E., Mulitsch M., Greenberg J., Whiting M., Ustin S. and Kefauver S. (2006). Mapping invasive aquatic vegetation in the Sacramento-San Joaquin Delta using hyperspectral imagery. Environmental Monitoring and Assessment, 121(1-3), pp. 47-64. doi: 10.1007/s10661-005-9106-4

54. Unesco.org, (2019). UNESCO’s Official Website. [online] Available at: https://whc.unesco.org/en/list/754

55. Wang W., Gorsuch J. and Hughes J. (1997). Plants for Environmental Studies. New York: CRC Press.

56. Wang B., Wang Y. and Wang W. (2014). Retention and mitigation of metals in sediment, soil, water, and plant of a newly constructed root-channel wetland (China) from slightly polluted source water. SpringerPlus, 3(1), p. 326. doi: 10.1186/2193-1801-3-326

57. Ye Z., Baker A., Wong M. and Willis A. (1997). Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed, Phragmites australis (Cav.) Trin. ex Steudel. Annals of Botany, 80(3), pp. 363-370. doi: 10.1006/anbo.1997.0456


For citation:


Shinkareva G.L., Lychagin M.Y., Tarasov M.K., Pietroń J., Chichaeva M.A., Chalov S.R. Biogeochemical specialization of macrophytes and their role as a biofilter in the Selenga delta. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(3):240-263. https://doi.org/10.24057/2071-9388-2019-103

Views: 64


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)