Advanced search

Stochastic Models Of Dynamic Balance State For The Morphological Patterns Of Cryolithozone Landscapes

Full Text:


The paper deals with mathematical modeling of a morphological pattern for a broad spectrum of cryolithozone landscapes in a state of a dynamic balance. The state of the dynamic balance means that all the elements of this morphological pattern are in continuous changing while its general parameters as a whole are stable. Two contradirectional processes at the same territory is a precondition for a state of dynamic balance.
We developed a morphological pattern model for lacustrine thermokarst plains with fluvial erosion on the base of the mathematical morphology of landscape using the random process theory. The contra-directional processes here include thermokarst lakes appearing and increasing in size from one side and drainage of the lakes by fluvial erosion, from the other. Thus, the regularities of the structure and dynamics of each landscape morphological pattern are theoretically substantiated. The results of the mathematical modeling were empirically verified at some key sites.

About the Authors

Alexey S. Victorov
Sergeev Institute of Environmental Geoscience of Russian Academy of Science
Russian Federation
Moscow, Russia

Olga N. Trapeznikova
Sergeev Institute of Environmental Geoscience of Russian Academy of Science
Russian Federation
Moscow, Russia


1. Burn C.R., Smith M. W. (1990). Development of Thermokarst Lakes During the Holocene at Sites Near Mayo, Yukon Territory. Permafrost and Periglacial Processes, v. 1, pp. 161-176.

2. Dneprovskaya V. P., Bryksina N. A., Polishchuk Yu. M. (2009). Study of Thermokarst Changes in Discontinuous Zone of West-Siberian Permafrost Based on Space Images. Issledovanie Zemli iz Kosmosa. 4. pp. 88-96 (in Russian).

3. Günther F., Overduin P., Baranskaya A., Opel T. and Grigoriev M. N. (2013). Observing Muostakh Island disappear: erosion of a ground-ice-rich coast in response to summer warming and sea ice reduction on the East Siberian shelf // The Cryosphere Discussions, 7, pp. 4101-4176.

4. Kipotin S.N., Polishchuk Yu. M., Bryksina N. A. (2009). Abrupt changes of thermokarst lakes in Western Siberia: impacts of climatic warming on permafrost melting. International Journal of Environmental Studies. v 66, 4, pp. 423-431.

5. Kravtsova V.I., Bystrova A.G. (2009). Changes in thermokarst lake size in different regions of Russia for the last 30 years, Kriosfera Zemli, v.15, 2, pp. 16-26.

6. Liu L., Schaefer K., Gusmeroli A., Grosse G., Jones B. M., Zhang T., Parsekian A. D., and Zebker H. A. (2013). Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska//The Cryosphere Discuss., 7, pp. 5793–5822.

7. Mamai I.I. (2005). Landscape dynamics and functioning. Moscow, MSU publishing house, 138 p. (in Russian).

8. Melnikov V.P. ed. (2012). Kompleksnyy monitoring severotayezhnykh geosistem Zapadnoy Sibiri (Comprehensive monitoring of the northern taiga geosystems of Western Siberia) Academician publ. house “GEO”, 207 p.

9. Morgenstern A., Grosse, G., Günther F., Fedorova I., and Schirrmeister L. (2011). Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta, The Cryosphere, 5, рр. 849-867.

10. Morgenstern A., Ulrich M., Günther F., Boike J. and Schirrmeister L. (2012). Evolution of a Thermokarst Basin in Ice-Rich Permafrost, Siberian Lena Delta. // Melnikov, P.I. (ed.). Tenth International Conference on Permafrost. Vol. 4: Proceedings of the Tenth International Conference on Permafrost Salekhard, Yamal-Nenets Autonomous District, Russia. Coedited by D.S. Drozdov and V.E. Romanovsky. The Northern Publisher, Salekhard, Russia, pp.

11. -407.

12. Muster S., Riley W.J., Roth K., Langer M., Cresto Aleina F., Koven C.D., Lange S., Bartsch A., Grosse G., Wilson C.J., Jones B.M. and Boike J. (2019). Size Distributions of Arctic Waterbodies Reveal Consistent Relations in Their Statistical Moments in Space and Time. Front. Earth Sci. 7:5. doi: 10.3389/feart.2019.00005.

13. Novikova N.M., Kust G.S., Kuzmina Zh.V., Trofimova G.U., Dikareva T.V., Avetian S.A., Rozov S.U., Deruzhinskaya V.O., Safonicheva L.F., Lubeznov U.E. (1998). Contemporary Plant and Soil Cover Changes in The Amu-Darya and Syr-Darya River Deltas. Ecological Research and Monitoring of the Aral Sea Deltas: A Basis for Restoration. UNESCO Aral Sea Project 1992-1996 Final Scientific Reports. Paris, 1998. pp. 55-80.

14. Polishuk Y.M., Polishuk V.Y. (2014). Geo-simulation approach to modelling spatial objects and its application to creating thermokarst lake model using remote sensing data. BIOCLIMLAND (Biota, Climate, Landscapes). 1. pp. 53-69.

15. Victorov A.S., Kapralova V.N. (2013). Quantitative assessment of natural risks based on satellite observation data (a case study of thermokarst plains). Izvestiya, Atmospheric and Oceanic Physics, Vol. 49(9), pp. 1069–1073.

16. Victorov A.S. (2005). Mathematical Models of Thermokarst Erosion Plains. \\ GIS and Spatial Analysis. Proceedings of IAMG2005, Toronto, Canada. v. 1, pp 62-67.

17. Viktorov A.S. (1995). The Mathematical Model of Thermokarst Lakes Surface as One of the Bases of the Space Survey Interpretation. Issledovanie Zemli iz Kosmosa. 5. pp. 42-50 (in Russian).

18. Viktorov A.S. (1998). The general problems of the mathematical morphology of landscape. Moscow. Tratek. p.191.

19. Viktorov A.S. (2007). Risk Assessment Based on the Mathematical Model of Diffuse Exogenous Geological Processes. Mathematical Geology. V. 39(8). pp. 735-748.

20. Viktorov A.S., Kapralova V.N., Orlov T.V., Trapeznikova O.N., Arkhipova M.V., Berezin P.V., Zverev A.V., Panchenko E.N., Sadkov S.A. (2017). Consistent patterns of the size distribution of thermokarst lakes. Doklady Earth Sciences. v. 474(2). pp. 692-694.

21. Vinogradov B.V. (1990). The Mapping of Ecosystem Dynamics: A Quantitative Approach. Mapping Sciences and Remote Sensing. 27(1), pp. 68-76. DOI: 10.1080/07493878.1990.10 641790/.


For citations:

Victorov A.S., Trapeznikova O.N. Stochastic Models Of Dynamic Balance State For The Morphological Patterns Of Cryolithozone Landscapes. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(3):6-15.

Views: 656

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)