Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Effects Of Deforestation And Afforestation In The Central Part Of The East European Plain On Regional Weather Conditions

https://doi.org/10.24057/2071-9388-2019-12

Abstract

Forest vegetation can affect the climate and weather patterns in multiple ways. What are the main mechanisms of such influence and how the land-use and vegetation changes may affect the weather and climate conditions in different geographical regions are still not quite clear. In our study, the possible impact of land use and forest cover changes in the central part of the East European plain on regional meteorological conditions was investigated using the regional COSMO model. In our modeling experiments we used two extreme land-use change scenarios imitating total deforestation and afforestation of experimental area located between 55° and 59ºN and 28° and 37°E in the central part of the East European plain. Modeling results conducted for the year 2016 showed that deforestation results in increase of the temperature difference between summer and winter months by up to 0.6ºС and in reduction of the annual precipitation by 35 mm. On the contrary, afforestation leads to decrease of the annual temperature range by 0.3° С and to growth of annual precipitation by 15 mm. Moreover, the deforestation results in higher frequencies of stronger winds and lower number of fog events, while the afforestation leads to opposite effects. Analysis of the Khromov and Gorchinsky indexes of continentality showed that the deforestation of the selected experimental area may lead to increase of the climate continentality in the study region, whereas the afforestation results in milder climate conditions.

About the Authors

Mikhail A. Nikitin
Hydrometeorological Research Center of Russian Federation
Russian Federation
Moscow.


Ekaterina V. Tatarinovich
Hydrometeorological Research Center of Russian Federation; Moscow State University
Russian Federation

Faculty of Geography, MSU.

Moscow.



Inna A. Rozinkina
Hydrometeorological Research Center of Russian Federation
Russian Federation
Moscow.


Andrei E. Nikitin
Hydrometeorological Research Center of Russian Federation
Russian Federation
Moscow.


References

1. Anav A., Ruti P.M., Artale V., Valentini R. (2010). Modelling the effects of land-cover changes on surface climate in the Mediterranean region. Clim. Res., [online] 41(2), pp. 91–104. Available at: https://doi.org/10.3354/cr00841 [Accessed 22 Jan. 2019].

2. Asensio H., Massmer M., Liithi D., Osterried K. (2018). External Parameters for Numerical Weather Prediction and Climate Application [online]. Available at: http://www.cosmo-model.org/content/support/software/ethz/extpar-userManual-v5.0.pdf [Accessed 10 Apr. 2019].

3. Bathiany S., Claussen M., Brovkin V., Raddatz T., Gayler V. (2010). Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences, [online] 7, pp. 1383–1399. Available at: https://doi.org/10.5194/bg-7-1383-2010 [Accessed 22 Jan. 2019].

4. Bonan G.B., Pollard D., Thompson S.L. (1992). Effects of boreal forest vegetation on global climate. Nature, 359, pp. 716–718.

5. Brovkin V., Raddatz T., Reick C.H., Claussen M., Gayler V. (2009). Global biogeophysical interactions between forest and climate. Geophysical Research Letters, [online] 36, L07405. Available at: https://doi.org/10.1029/2009GL037543 [Accessed 22 Jan. 2019].

6. Carlson D.W., Groot A. (1997). Microclimate of clear-cut, forest interior and small openings in trembling aspen forest. Agricultural and Forest Meteorology, [online] 87, pp. 313–329. Available at: https://doi.org/10.1016/S0168-1923(95)02305-4 [Accessed 22 Jan. 2019].

7. Doms G., Baldauf M. (2018). A description of the Nonhydrostatic Regional COSMO-Model. Part I: Dynamics and Numerics [online]. Available at: http://www.cosmo-model.org/content/model/documentation/core/cosmoDyncsNumcs.pdf [Accessed 23 Jan. 2019].

8. Kireeva-Ginenko I.A., Novikova E.P., Chumeikina A.S. (2017). Analysis and valuation of continentality index in the Central-Chernozem area for last 30 years. Progress in contemporary natural sciences, [online] No. 7, pp. 76–80 (in Russian). Available at: http://www.natural-sciences.ru/ru/article/view?id=36481 [Accessed 22 Jan. 2019].

9. Khromov S.P. and Mamontova L.I. (1974). Meteorological dictionary. Leningrad, USSR: Gidrometizdat (in Russian).

10. Kulmala L., Aaltonen H., Berninger F., Kieloaho A.J., Levula J., Bäck J., Hari P., Kolari P., Korhonen J.F.J., Kulmala M., Nikinmaa E., Pihlatie M., Vesala T., Pumpanen J. (2014). Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash. Agricultural and Forest Meteorology, [online] 188, pp. 33–44. Available at: https://doi.org/10.1016/j.agrformet.2013.12.003 [Accessed 22 Jan. 2019].

11. Kuz'mina E.V., Olchev A.V., Nikitin M.A., Rozinkina I.A., Rivin G.S. (2017a). Impact of forest coverage variations in the central regions of the European Russia on the regional meteorological conditions: assessment with application of climate version of COSMO model. In: A.V. Olchev, ed., Forests of the European territory of Russia in condition of changing climate, 1st ed. Moscow, Russia: Community of scientific publications КМК, pp. 230–272 (in Russian).

12. Kuz’mina E.V., Ol’chev A.V., Rozinkina I.A., Rivin G.S., Nikitin M.A. (2017b). Application of the COSMO-CLM mesoscale model to assess the effects of forest cover changes on regional weather conditions in the European part of Russia. Russian Meteorology and Hydrology, 42(9), pp. 574–581.

13. Mamkin V., Kurbatova J., Avilov V., Mukhartova Y., Krupenko A., Ivanov D., Levashova N., Olchev A. (2016). Changes in net ecosystem exchange of CO2, latent and sensible heat fluxes in a recently clear-cut spruce forest in western Russia: results from an experimental and modeling analysis. Environ. Res. Lett., 11(12), 125012.

14. Mamkin V., Kurbatova J., Avilov V., Ivanov D., Kuricheva O., Varlagin A., Yaseneva I., Olchev A. (2019). Energy and CO2 exchange in an undisturbed spruce forest and clear-cut in the Southern Taiga. Agricultural and Forest Meteorology, 265, pp. 252–268. Available at: https://doi.org/10.1016/j.agrformet.2018.11.018 [Accessed 22 Jan. 2019].

15. Mironov D.V. (2008). Parameterization of lakes in numerical weather prediction. Description of a lake model. COSMO Technical Report, No. 11. Offenbach am Main, Germany: Deutscher Wetterdienst.

16. Nobre C.A., Sellers P.J., Shukla J. (1991). Amazonian deforestation and regional climate change. J. Clim., [online] 4, pp. 957–988. Available at: https://doi.org/10.1175/1520-0442(1991)004<0957:ADARCC>2.0.CO;2 [Accessed 22 Jan. 2019].

17. Olchev A., Radler K., Sogachev A., Panferov O., Gravenhorst G. (2009). Application of a three-dimensional model for assessing effects of small clear-cuttings on radiation and soil temperature. J. Ecol. Modell., [online] 220, pp. 3046–3056. Available at: https://doi.org/10.1016/j.ecolmodel.2009.02.004 [Accessed 22 Jan. 2019].

18. Olchev A.V., Rozinkina I.A., Kuzmina E.V., Nikitin M.A., Rivin G.S. (2018). Influence of forest cover changes on regional weather conditions: estimations using the mesoscale model COSMO. IOP Conf. Series: Earth and Environmental Science, 107, P. 012105-012105.

19. Pielke R.A., Adegoke J., Beltran-Przekurat A., Hiemstra C.A., Lin J., Nair U.S., Niyogi D., Nobis T.E. (2007). An overview of regional land-use and landcover impacts on rainfall. Tellus B: Chemical and Physical Meteorology, [online] 59, pp. 587–601. Available at: https://doi.org/10.1111/j.1600-0889.2007.00251.x [Accessed 22 Jan. 2019].

20. Rivin G.S., Rozinkina I.A., Vil’fand R.M., Alferov D.Yu., Astakhova E.D., Blinov D.V., Bundel’ A.Yu., Kazakova E.V., Kirsanov A.A., Nikitin M.A., Perov V.L., Surkova G.V., Revokatova A.P., Shatunova M.V., and Chumakov M.M. (2015). The COSMO-Ru system of nonhydrostatic mesoscale short-range weather forecasting of the Hydrometcenter of Russia: The second stage of implementation and development. Russian Meteorology and Hydrology, 40(6), pp. 400–410.

21. Seidl R., Schelhaas M.J., Rammer W., Verkerk P.J. (2014). Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang., 4(9), pp. 806–810.

22. Selyaninov G.T. (1928). About climate agricultural estimation. Proceedings on Agricultural Meteorology, 20, pp. 165–177.

23. Woodward F.I. (1987). Climate and plant distribution. Cambridge: Cambridge University Press.

24. Whittaker R.H. (1975). Communities and Ecosystems. New York: MacMillan.


Review

For citations:


Nikitin M.A., Tatarinovich E.V., Rozinkina I.A., Nikitin A.E. Effects Of Deforestation And Afforestation In The Central Part Of The East European Plain On Regional Weather Conditions. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(2):259-272. https://doi.org/10.24057/2071-9388-2019-12

Views: 767


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)