Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Net Ecosystem Exchange, Gross Primary Production And Ecosystem Respiration In Ridge-Hollow Complex At Mukhrino Bog

https://doi.org/10.24057/2071-9388-2018-77

Full Text:

Abstract

The continuous field measurements  of net ecosystem exchange (NEE) of CO2 were provided at ridge-hollow oligotrophic bog in the Middle Taiga zone of West Siberia, Russia  in 2017-2018. The model of net ecosystem  exchange  of CO2  was suggested  to describe  the influence  of different  environmental  factors  on NEE and to estimate  the total carbon budget of the bog over the growing  season. The model uses air and soil temperature, incoming  photosynthetically  active radiation (PAR) and water table depth, as the key factors influencing gross primary production  (GPP) and ecosystem respiration (ER). The model coefficients were calibrated using the data collected  by automated soil CO2  flux system with two transparent long-term  chambers  placed at large hollow and small ridge sites.

Experimental and modeling results showed that the Mukhrino bog acted over the study period as a carbon  sink, with  an average NEE of –87.7 gC m-2 at the hollow site and –50.2 gC m-2  at the ridge  site. GPP was – 344.8 and –228.5 gC m-2  whereas ER was 287.6 and 140.9 gC m-2  at ridge and hollow  sites, respectively.  Despite of a large difference in NEE estimates  between 2017 and 2018 the growing  season variability  of NEE were quite similar.

About the Authors

Egor A. Dyukarev
Yugra State University; Institute of Monitoring of Climatic and Ecological System of the Siberian Branch Russian Academy of Sciences
Russian Federation
Khanty-Mansiysk; Tomsk.


Evgeniy A. Godovnikov
Yugra State University
Russian Federation
Khanty-Mansiysk.


Dmitriy V. Karpov
Yugra State University
Russian Federation
Khanty-Mansiysk.


Sergey A. Kurakov
Institute of Monitoring of Climatic and Ecological System of the Siberian Branch Russian Academy of Sciences
Russian Federation

Tomsk.



Elena D. Lapshina
Yugra State University
Russian Federation
Khanty-Mansiysk.


Ilya V. Filippov
Yugra State University
Russian Federation
Khanty-Mansiysk.


Nina V. Filippova
Yugra State University
Russian Federation
Khanty-Mansiysk.


Evgeniy A. Zarov
Yugra State University
Russian Federation
Khanty-Mansiysk.


References

1. Acosta M., Juszczak R., Chojnicki B., Pavelka M., Havránková K., Lesny J., Krupková L., Urbaniak M., Machačová K., Olejnik J. (2017). CO2 Fluxes from Different Vegetation Communities on a Peatland Ecosystem. Wetlands, V.37, N.3, pp. 423–435. https://doi.org/10.1007/s13157-017-0878-4.

2. Alekseychik P., Mammarella I., Karpov D., Dengel S., Terentieva I., Sabrekov A., Glagolev M., Lapshina E.D. (2017). Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog. Atmos. Chem. Phys., V.17, pp. 9333-9345, https://doi.org/10.5194/acp-17-9333-2017.

3. Baird A., Belyea L., Comas x., Reeve A., Slater L. (2013). Carbon Cycling in Northern Peatlands. Geophysical Monograph Series. AGU pp. 297.

4. Bleuten W., Filippov I. (2008). Hydrology of mire ecosystems in central West Siberia: the Mukhrino Field Station, in Transactions of UNESCO department of Yugorsky State University “Dynamics of environment and global climate change” ed. Lapshina, E. D., Novosibirsk, NSU, pp. 208–224.

5. Bubier J.L., Crill P.M., Mosedale A., Frolking S., Linder E. (2003). Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Glob. Biogeochem Cycles. V.17. N.2, p.1066. https://doi.org/10.1029/2002GB001946.

6. Campbell D.I., Smith J., Goodrich J.P., Wall A.M., Schipper L.A. (2014). Year-round growing conditions explains large CO2 sink strength in a New zealand raised peat bog. Agricultural and Forest Meteorology, V.192–193, pp.59–68. https://doi.org/10.1016/j.agrformet.2014.03.003.

7. Campbell D.I., Wall A.M., Nieveen J.P., Schipper L.A. (2015). Variations in CO2 exchange for dairy farms with year-round rotational grazing on drained peatlands. Agric. Ecosyst. Environ. V.202, pp.68–78. http://dx.doi.org/10.1016/j.agee.2014.12.019.

8. Ciais P., Sabine C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R.B., Piao, S., Thornton, P. (2013). Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., xia, Y., Bex, V., Midgley, P.M. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

9. Davydov D.K., Dyachkova A.V., Fofonov A.V., Maksyutov S.S., Dyukarev E.A., Smirnov S.V., Glagolev M.V. (2018). Measurements of methane and carbon dioxide fluxes from wetland ecosystems of the Southern Taiga of West Siberia. Proceedings of SPIE - The International Society for Optical Engineering. V.10833, 1083389.

10. Dyukarev E.A. (2017). Partitioning of net ecosystem exchange using chamber measurements data from bare soil and vegetated sites. Agricultural and Forest Meteorology. V.239, pp. 236-248. https://doi.org/10.1016/j.agrformet.2017.03.011.

11. Dyukarev E.A., Golovatskaya E.A., Duchkov A.D., Kazantsev S.A. (2009). Temperature monitoring in Bakchar bog ( West Siberia). Russian Geology and Geophysics, N.6, pp. 745-754. https://doi.org/10.1016/j.rgg.2008.08.010.

12. Dyukarev E.A., Pologova N.N., Dyukarev A.G, Golovatskaya E.A. (2011). Forest cover disturbances in the South Taiga of Western Siberia. Environ. Res. Lett. V.6, N.3, 035203 9pp. https://doi.org/10.1088/1748-9326/6/3/035203.

13. Eckhardt T., Knoblauch C., Kutzbach L., Simpson G., Abakumov E., and Pfeiffer E.-M. (2018). Partitioning CO2 net ecosystem exchange fluxes on the microsite scale in the Lena River Delta, Siberia, Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-311, in review.

14. Falge E., Baldocchi D., Olson R., Anthoni P., Aubinet M., Bernhofer C., Burba G., Ceulemans R., Clement R., Dolman H., Granier A., Gross P., Grünwald T., Hollinger D., Jensen N.-O., Katul G., Keronen P., Kowalski A., Ta Lai C., Law B.E., Meyers T., Moncrieff J., Moors E., Munger J.W., Pilegaard K., Rannik Ü., Rebmann C., Suyker A., Tenhunen J., Tu K., Verma S., Vesala T., Wilson K., Wofsy S. (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. V.107, pp.43–69. https://doi.org/10.1016/S0168-1923(00)00225-2.

15. Filippova N.V., Bulyonkova T.M. Lapshina, E.D. (2015). Fleshy fungi forays in the vicinities of the YSU Mukhrino field station ( Western Siberia). Environ. Dyn. Glob. Clim. Change, V.6, pp.3–31. http://dx.doi.org/10.17816/edgcc613-31.

16. Fleischer E., Khashimov I., Hölzel N., Klemm O. (2016). Carbon exchange fluxes over peatlands in Western Siberia : Possible feedback between land-use change and climate change. Science of the Total Environment. V.545–546, pp. 424–433. https://doi.org/10.1016/j.scitotenv.2015.12.073.

17. Franz D., Acosta M., Altimir N., Arriga N., Arrouays D., Aubinet M. et al. (2018). Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe´s terrestrial ecosystems: a review. International Agrophysics. V.32, N.4, pp. 439-455. https://doi.org/10.1515/intag-2017-0039.

18. Glagolev M., Kleptsova I., Filippov I., Maksyutov S., Machida T. (2011). Regional methane emission from West Siberia mire landscapes. Environ. Res. Lett., V.6, pp. 045214, https://doi.org/10.1088/1748-9326/6/4/045214.

19. Glagolev M.V., Ilyasov D.V., Terentyeva I.E., Sabrekov A.F., Krasnov O.A., Maksyutov Sh.Sh. (2017). Methane and carbon dioxide fluxes in the waterlogged forests of Western Siberian southern and middle taiga subzones. Optika Atmosfery i Okeana. V.30, N. 04, pp. 301–309 (in Russian).

20. Golovatskaya E.A., Dyukarev E.A. (2011). Seasonal and diurnal dynamics of CO2 emission from oligotrophic peat soil surface. Russian Meteorology and Hydrology. N.6, pp.84-93. https://link.springer.com/article/10.3103%2FS1068373911060094.

21. Golovatskaya E.A. and Dyukarev E.A. (2012). The influence of environmental factors on the CO2 emission from the surface of oligotrophic peat soils in West Siberia. Eurasian Soil Science Journal. N.6, pp. 658–667. https://link.springer.com/article/10.1134/S106422931206004x.

22. Golovatskaya E.A., Dyukarev E.A., Ippolitov I.I., Kabanov M.V. (2008). Influence of landscape and hydrometeorological conditions on CO2 emission in peatland ecosystems. Doklady Earth Sciences. N.4, pp.1-4.

23. Grant R.F., Desai A.R., Sulman B.N. (2012). Modelling contrasting responses of wetland productivity to changes in water table depth. Biogeosciences, V.9, N.11, pp.4215–4231. https://doi.org/10.5194/bg-9-4215-2012.

24. Grebenyuk G.N., Kuznetsova V.P. (2012). Modern climate dynamics and phonological variability of northern territories. Fundamental research, N.11-5, pp. 1063-1077 (in Russian).

25. Günther A., Jurasinski G., Albrecht K., Gaudig G., Krebs M., Glatzel S. (2017) Greenhouse gas balance of an establishing Sphagnum culture on a former bog grassland in Germany. Mires and Peat. V.20, pp. 1-16. https://doi.org/10.19189/MaP.2015.OMB.210.

26. Helfter C., Campbell C., Dinsmore K.J., Drewer J., Coyle M., Anderson M., Skiba U., Nemitz E., Sutton M.A. (2015). Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland. Biogeosciences, V.12, N.6, pp.1799–1811. https://doi.org/10.5194/bg-12-1799-2015.

27. Humphreys E.R., Lafleur P.M. (2011). Does earlier snowmelt lead to greater CO2 sequestration in two low arctic tundra ecosystems? Geophys. Res. Lett. V.38, N.5, L09703. https://doi.org/10.1029/2011GL047339.

28. Ivanov D.G., Avilov V.K., Kurbatova Y.A. (2017). CO2 fluxes at south taiga bog in the European part of Russia in summer. Contemporary Problems of Ecology. V.10, N.2, pp. 97–104. https://doi.org/10.1134/s1995425517020056.

29. Kabanov M.V. (2015). Regional climate-regulating factors in Western Siberia Geography and Natural Sciences. V.3, pp. 207-113.

30. Kandel T.P., Elsgaard L., Larke, P.E. (2013). Measurement and modelling of CO2 flux from a drained fen peatland cultivated with reed canary grass and spring barley. GCB Bioenergy. V.5, pp. 548-561. https://doi.org/10.1111/gcbb.12020.

31. Kurbatova J., Li C., Tatarinov F., Varlagin A., Shalukhina N., Olchev A. (2009). Modeling of the carbon dioxide fluxes in European Russia peat bogs. Environmental Research Letters, V.4, N.4, 045022. https://doi.org/10.1088/1748-9326/4/4/045022.

32. Kurganova I.N., Lopes de Gerenyu V.O. L., Petrov A.S., Myakshina T.N., Sapronov D.V., Ableeva V. A., Kudeyarov V. N. (2011). Effect of the observed climate changes and extreme weather phenomena on the emission component of the carbon cycle in different ecosystems of the southern taiga zone. Doklady Biological Sciences, V.441, N.1, pp. 412-416. https://doi.org/10.1134/S0012496611060214.

33. Lagarias J.C., Reeds J.A., Wright M.H., Wright P.E. (1998). Convergence properties of the nelder-mead simplex method in low dimensions. SIAM Journal of Optimization, V.9, N.1, pp. 112–147.

34. Laine A., Riutta T., Juutinen S., Valiranta M., Tuittila E.S. (2009). Acknowledging the spatial heterogeneity in modelling/reconstructing carbon dioxide exchange in a northern aapa mire. Ecol. Modell. V.220, pp.2646–2655. https://doi.org/10.1016/j.ecolmodel.2009.06.047.

35. Laine A.M., Mehtätalo L., Tolvanen A., Frolking S., Tuittila E.S. (2019). Impacts of drainage, restoration and warming on boreal wetland greenhouse gas fluxes Sci. Total Environ., V.647 pp. 169-181, https://doi.org/10.1016/j.scitotenv.2018.07.390.

36. Lapshina E.D., Alexeychik P., Dengel S., Filippova N.V., zarov E.A., Filippov I.V., Terentyeva I.E., Sabrekov A.F., Solomin Y.R., Karpov D.V., Mammarella I. (2015). A new peatland research station in the center of West Siberia: description of infrastructure and research activities. Report series in aerosol science. pp. 236-240. http://www.atm.helsinki.fi/faar/reportseries/rs-180.pdf.

37. Leifeld J., Menichetti L. (2018). The underappreciated potential of peatlands in global climate change mitigation stratigies, Nat. Commun., V.9, pp.1071, https://doi.org/10.1038/s41467-018-03406-6.

38. Leroy F., Gogo S., Guimbaud C., Bernard-Jannin L., Hu z., Laggoun-Défarge F. (2017). Vegetation composition controls temperature sensitivity of CO2 and CH4 emissions and DOC concentration in peatlands. Soil Biology and Biochemistry, V.107, pp.164–167. https://doi.org/10.1016/j.soilbio.2017.01.005.

39. Mäkelä A., Hari P., Berninger F., Hänninen H., Nikinmaa E. (2004). Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature. Tree Physiol. V.24, N.4, pp. 369–376. https://www.ncbi.nlm.nih.gov/pubmed/14757576.

40. McVeigh P., Sottocornola M., Foley N., Leahy P., Kiely G. (2014). Meteorological and functional response partitioning to explain interannual variability of CO2 exchange at an Irish Atlantic blanket bog. Agricultural and Forest Meteorology V.194, pp. 8–19. https://doi.org/10.1016/j.agrformet.2014.01.017.

41. Minkkinen K., Ojanen P., Penttilä T., Aurela M., Laurila T., Tuovinen J.-P., Lohila A. (2018). Persistent carbon sink at a boreal drained bog forest. Biogeosciences. V.15, N.11, pp. 3603–3624. https://doi.org/10.5194/bg-15-3603-2018.

42. Molchanov A.G. (2015). Gas exchange in sphagnum mosses at different near-surface groundwater levels. Russian Journal of Ecology. V.46, N.3. pp. 230-235. https://doi.org/10.7868/s0367059715030063.

43. Molchanov A.G., Olchev A.V. (2016) Model of CO2 exchange in a sphagnum peat bog. Computer research and modelling. V.8. N.2. pp. 369-377.

44. Munir T.M., xu B., Perkins M., Strack M. (2014). Responses of carbon dioxide flux and plant biomass to water table drawdown in a treed peatland in Northern Alberta: A climate change perspective. Biogeosciences. V.11, N.3, pp. 807–820. https://doi.org/10.5194/bg-11-807-2014.

45. Naumov A.V. (2009). Soil respiration. Novosibirsk, Izd SO RAN. P. 208.

46. Nilsson M., Sagerfors J., Buffam I., Laudon H., Eriksson T., Grelle A., Klemedtsson L., Weslien P., Lindroth A. (2008). Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – a significant sink after accounting for all C-fluxes. Global Change Biol. 14 (10), 2317–2332. https://doi.org/10.1111/j.1365-2486.2008.01654.x.

47. Olefeldt D., Roulet N.T., Bergeron O., Crill P., Bäckstrand K., Christensen T.R. (2012). Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands. Geophys. Res. Lett. 39, L03501 https://doi.org/10.1029/2011GL050355.

48. Olchev A., Novenko E., Desherevskaya O., Krasnorutskaya K., Kurbatova J. (2009). Effects of climatic changes on carbon dioxide and water vapor fluxes in boreal forest ecosystems of European part of Russia. Environmental Research Letters, V.4, N.4, 045007 https://doi.org/10.1088/1748-9326/4/4/045007.

49. Page S., Baird A. (2016). Peatlands and global change: response and resilience, Ann. Rev. Environ. Resour., V.41, pp.35–57.

50. Parazoo N.C., Koven C.D., Lawrence D.M., Romanovsky V. Miller C.E. (2017) Detecting the permafrost carbon feedback: Talik formation and increased cold-season respiration as precursors to sink-to-source transitions. The Cryosphere, https://doi.org/10.5194/tc-2017-189.

51. Pavelka M., Acosta M., Kiese R., Altimir N., Brümmer C., Crill P., Darenova E., Fuß R., Gielen B., Graf A., Klemedtsson L., Lohila A., Longdoz B., Lindroth A., Nilsson M., Jiménez S., Merbold L., Montagnani L., Peichl M., Pihlatie M., Pumpanen J., Ortiz P., Silvennoinen H., Skiba U., Vestin P., Weslien P., Janous D., Kutsch, W. (2018). Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems. International Agrophysics, V.32, N.4, pp.569–587. https://doi.org/10.1515/intag-2017-0045.

52. Peatlands of West Siberia (1976). Their composition and hydrological regime. Leningrad, Hydrometeoizdat. P. 615.

53. Pessarakli M. (2005). Handbook of Photosynthesis. Taylor & Francis Group. P.928.

54. Pugh C. A., Reed D. E., Desai A. R., Sulman B. N. (2018). Wetland flux controls: how does interacting water table levels and temperature influence carbon dioxide and methane fluxes in northern Wisconsin? Biogeochemistry, V.137, N.1–2, pp. 15–25. https://doi.org/10.1007/s10533-017-0414-x.

55. Ratcliffe J.L., Creevy A., Andersen R., zarov E., Gaffney P., Taggart M.A., Mazei Y., Tsyganov A.N., Rowson J.G., Lapshina E.D., Payne R.J. (2017). Ecological and environmental transition across the forested-to-open bog ecotone in a west Siberian peatland Science of the Total Environment. V.607-608, pp.816-828. https://doi.org/10.1016/j.scitotenv.2017.06.276.

56. Runkle B.R.K., Sachs T., Wille C., Pfeiffer E.-M., Kutzbach L. (2013). Bulk partitioning the growing season net ecosystem exchange of CO2 in Siberian tundra reveals the seasonality of its carbon sequestration strength. Biogeosciences. V.10, pp.1337-1349. https://doi.org/10.5194/bg-10-1337-2013, 2013.

57. Rydin H., Jeglum J. (2015). The Biology of Peatlands. Oxford. Univ. Press., pp. 400.

58. Sasakawa M., Ito A., Machida T., Tsuda N., Niwa Y., Davydov D., Fofonov A., Arshinov M. (2012). Annual variation of CH4 emissions from the middle taiga in West Siberian Lowland (2005-2009): A case of high CH4 flux and precipitation rate in the summer of 2007. Tellus, Series B: Chemical and Physical Meteorology, V.64, N.1, pp.1–10. https://doi.org/10.3402/tellusb.v64i0.17514.

59. Saunois M., Bousquet P., Poulter B., Peregon A., Ciais P., Canadell J. G., Dlugokencky E. J., Etiope G., Bastviken D., Houweling S., Janssens-Maenhout G., Tubiello F. N., Castaldi S., Jackson R. B., Alexe M., Arora V. K., Beerling D. J., Bergamaschi P., Blake D. R., Brailsford G., Brovkin V., Bruhwiler L., Crevoisier C., Crill P., Covey K., Curry C., Frankenberg C., Gedney N., Höglund-Isaksson L., Ishizawa M., Ito A., Joos F., Kim H.-S., Kleinen T., Krummel P., Lamarque J.-F., Langenfelds R., Locatelli R., Machida T., Maksyutov S., McDonald K. C., Marshall J., Melton J. R., Morino I., Naik V., O'Doherty S., Parmentier F.-J. W., Patra P. K., Peng C., Peng S., Peters G. P., Pison I., Prigent C., Prinn R., Ramonet M., Riley W. J., Saito M., Santini M., Schroeder R., Simpson I. J., Spahni R., Steele P., Takizawa A., Thornton B. F., Tian H., Tohjima Y., Viovy N., Voulgarakis A., van Weele M., van der Werf G. R., Weiss R., Wiedinmyer C., Wilton D. J., Wiltshire A., Worthy D., Wunch D., xu x., Yoshida Y., zhang B., zhang z., zhu Q. (2016). The global methane budget 2000–2012, Earth Syst. Sci. Data, V.8, pp.697-751. https://doi.org/10.5194/essd-8-697-2016.

60. Sheng Y., Smith L.C., MacDonald G.M., Kremenetski K.V., Frey K.E., Velichko A.A., Lee M., Beilman D.W., Dubinin P. (2004). A high–resolution GIS–based inventory of the west Siberian peat carbon pool. Global Biogeochemical Cycles. V.18, p.GB3004.

61. Sokolov A.V., Mamkin V.V., Avilov V.K., Tarasov D.L., Kurbatova J.A., Olchev A.V. (2019). Application of a balanced identification method for gap-filling in CO2 flux data in a sphagnum peat bog. Computer research and modelling. V.11, N.1, pp.153-171. https://doi.org/10.20537/2076-7633-2019-11-1-153-171.

62. Stepanova V.A., Pokrovsky O.S. (2011). Macroelement composition of raised bogs peat in the middle taiga of Western Siberia (the bog complex Mukhrino), Tomsk State University Bulletin. V.352, pp.211–214, (in Russian).

63. Swenson M.M., Regan S., Bremmers D.T.H., Lawless J., Saunders M., Gill L.W. (2019). Carbon balance of a restored and cutover raised bog: implications for restoration and comparison to global trends. Biogeosciences. V.16, pp.713-731, https://doi.org/10.5194/bg-16-713-2019.

64. Szajdak L.W., Lapshina E.D., Gaca W., Styla K., Meysner T., Szczepanski M., zarov E.A. (2016). Physical, chemical and biochemical properties of Western Siberia Sphagnum and Carex peat soils, Environ. Dyn. Glob. Clim. Change, V.7, pp. 13–25. http://dx.doi.org/10.17816/edgcc7213-25

65. Taylor N., Price J., Strack M. (2016). Hydrological controls on productivity of regenerating Sphagnum in a cutover peatland. Ecohydrology, V.9, N.6, pp. 1017–1027. https://doi.org/10.1002/eco.1699.

66. Terentieva I. E., Glagolev M. V., Lapshina E. D., Sabrekov A. F., Maksyutov S. (2016). Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions, Biogeosciences, V.13, pp.4615-4626, https://doi.org/10.5194/bg-13-4615-2016.

67. The second assessment report of Roshydromet on climate change and their consequences on the territory of the Russian Federation (2014). Federal service for Hydrometeorology and environmental monitoring. pp. 605.

68. Veretennikova E.E. and Dyukarev E.A. (2017). Diurnal variations in methane emissions from West Siberia peatlands in summer. Russian Meteorology and Hydrology. V.42, N.5, pp. 319-326. https://link.springer.com/article/10.3103/S1068373917050077.

69. Vomperskiy S.E. (1994). The role of peatlands in carbon cycling, in Biogeocenotic features of peatlands and their rational exploitation. Moscow, Nauka, pp. 5-37.

70. Walker T.N., Garnett M.H., Ward S.E., Oakley S., Bardgett R. D., Ostle N. J. (2016). Vascular plants promote ancient peatland carbon loss with climate warming. Global Change Biology, V.22, N.5, pp. 1880–1889. https://doi.org/10.1111/gcb.13213.

71. Webster K.L., Bhatti J.S., Thompson D.K., Nelson S.A., Shaw C.H., Bona K.A., Hayne S.L., Kurz W.A. (2018). Spatially-integrated estimates of net ecosystem exchange and methane fluxes from Canadian peatlands. Carbon Balance and Management, V.13, N.1. https://doi.org/10.1186/s13021-018-0105-5.

72. Widlowski J.-L., Pinty B., Clerici M., Dai Y., De Kauwe M., de Ridder K., Kallel A., Kobayashi H., Lavergne T., NiMeister W., Olchev A., Quaife T., Wang S., Yang W., Yang Y., Yuan H. (2011). RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models. Journal of Geophysical Research: Biogeosciences, V.116, N.2. https://doi.org/10.1029/2010JG001511.

73. Wu J., Roulet N.T., Moore T.R., Lafleur P., Humphreys E. (2010). Dealing with microtopography of an ombrotrophic bog for simulating ecosystem-level CO2 exchanges. Ecological Modelling. V.222, N.4, pp. 1038–1047. https://doi.org/10.1016/j.ecolmodel.2010.07.015.

74. Yurova A., Wolf A., Sagerfors J., Nilsson M. (2007). Variations in net ecosystem exchange of carbon dioxide in a boreal mire: Modeling mechanisms linked to water table position. Journal of Geophysical Research: Biogeosciences, V.112, N.2, G02025. https://doi.org/10.1029/2006JG000342.

75. Zhaojun B., Joosten H., Hongkai L., Gaolin z., xingxing z., Jinze M., Jing z. (2011). The response of peatlands to climate warming: A review. Acta Ecologica Sinica, V.31, N.3, pp.157–162. https://doi.org/10.1016/j.chnaes.2011.03.006.

76. Zhou L., zhou G., Jia Q. (2009). Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China. Aquatic Botany, V.91, N.2, pp. 91–98. https://doi.org/10.1016/j.aquabot.2009.03.002.

77. Zhu x., Song C., Swarenzenski C.M., Guo Y., zhang x., Wang J. (2015). Ecosystem-atmosphere exchange of CO2 in a temperate herbaceous peatland in the Sanjiang Plain of northeast China. Ecological Engineering, V.75, pp. 16–23. https://doi.org/10.1016/j.ecoleng.2014.11.035.


For citation:


Dyukarev E.A., Godovnikov E.A., Karpov D.V., Kurakov S.A., Lapshina E.D., Filippov I.V., Filippova N.V., Zarov E.A. Net Ecosystem Exchange, Gross Primary Production And Ecosystem Respiration In Ridge-Hollow Complex At Mukhrino Bog. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(2):227-244. https://doi.org/10.24057/2071-9388-2018-77

Views: 145


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)