Advanced search

Three-Year Variability Of Energy And Carbon Dioxide Fluxes At Clear-Cut Forest Site In The European Southern Taiga

Full Text:


Forest  clearing  strongly  influences  the energy,  water and greenhouse  gas exchange at the land sur face - atmosphere inter face. To estimate effects of clear cutting on sensible (H), latent heat (LE) and  CO2 fluxes the continuous eddy covariance measurements were provided at the recently clear-cut  area situated in the western  part of Russia from spring 2016 to the end of 2018. The possible effects of surrounding  forest on the air flow disturbances and on the spatial pattern of horizontal advection terms within the selected clear-cut area were investigated using a process-based 3D momentum, energy and CO2 exchange  model.  The modeling  results showed a very low contribution  of horizontal advection term into total turbulent momentum  fluxes at flux tower location in case of the southern wind direction. The results of field flux measurements  indicated  a strong inter- and intra-annual  variability of energy and CO2 fluxes. The energy budget is characterized by higher  daily and monthly   LE fluxes throughout  the entire  period  of measurements excepting the first two months after timber harvest. The mean Bowen ratio (β=H/LE) was 0.52 in 2016, 0.30 - in 2017 and 0.35 - in 2018. Analysis of CO2 fluxes during the first year following harvest showed  that the monthly CO2 release at the clear-cut area consistently exceeded the CO2 uptake  rates. The mean net ecosystem  exchange  (NEE) in the period was 3.3±1.3 gC∙m-2∙d-1. During the second and the third years of the flux measurements the clear-cut was also a prevailed sink of CO2 for the atmosphere excepting short periods in June and in the first part  of July when daily CO2  uptake was higher than CO2  release rates. The mean NEE rates  averaged   for  the entire warm period of corresponding  years were 1.2±2.3  gС∙m-2∙d-1 in 2017 and 2.8±2.5  gC∙m-2∙d-1 in 2018, respectively.  The mean ratio between  gross  primary  production  (GPP) and ecosystem  respiration (TER) was 0.58 in 2016, 0.84 - in 2017 and 0.74 - in 2018.

About the Authors

Vadim V. Mamkin
A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
Russian Federation


Yulia V. Mukhartova
Moscow State University
Russian Federation

Faculty of Physics.


Maria S. Diachenko
A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
Russian Federation


Julia A. Kurbatova
A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
Russian Federation



1. Aguilos M., Takagi K., Liang N., Ueyama M., Fukuzawa K., Nomura M., Kishida O., Fukazawa T., Takahashi H., Kotsuka C., Sakai R., Ito K., Watanabe Y., Fujinuma Y., Takahashi Y., Muragama T., Saigusa N., Sakai R. (2014). Dynamics of ecosystem carbon balance recovering from a clear-cutting in a cool-temperate forest. Agric. For. Meteorol., 197, pp. 26-39.

2. Amiro B. D., Barr A. G., Black T. A., Iwashita H., Kljun N., McCaughey J. H., Morgenstern K., Murayama S., Nesic z., Orchansky A. L., Saigusa N. (2006). Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agric. For. Meteorol., 136, pp. 237-251.

3. Amiro B. D., Barr A. G., Barr J. G., Black T. A., Bracho R., Brown M., Chen J., Clark K. L., Davis K. J., Desai A. R., Dore S., Engel V., Fuentes J. D., Goldstein A. H., Goulden M. L., Kolb T. E., Lavigne M. B., Law B. E., Margolis H. A., Martin T., McCaughey J. H., Misson L. , Montes–Helu M., Noormets A., Randerson J. T., Starr G., xiao J. (2010). Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J. Geophys. Res. 115, G00K02.

4. Aubinet M., Vesala T. and Papale D. (2012). Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Dordrecht, The Netherlands, Springer

5. Burba G. (2013). Eddy covariance method for scientific, industrial, agricultural and regulatory applications: A field book on measuring ecosystem gas exchange and areal emission rates. LI-COR Biosciences

6. Coursolle C., Margolis H. A., Giasson M. A., Bernier P. Y., Amiro B. D., Arain M. A., Barr A.G., Black T.A., Goulden M.L., McCaughey J.H., Chen J. M., Dunn A.L., Grant R.F., Lafleur P.M. (2012). Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests. Agric. For. Meteorol. 165, pp. 136-148.

7. Garratt J.R. (1992). The atmospheric boundary layer. Cambridge: Cambridge University press.

8. Grant R. F., Barr A. G., Black T. A., Margolis H. A., McCaughey J. H., Trofymow J. A. (2010). Net ecosystem productivity of temperate and boreal forests after clearcutting - a Fluxnet– Canada measurement and modelling synthesis. Tellus Ser. B, 62(5), pp. 475-496.

9. Kljun, N., Calanca P., Rotach M. W., Schmid H. P. (2004). A simple parameterisation for flux footprint predictions Boundary Layer Meteorol. 112, pp. 503-523

10. Knohl A., Kolle O., Minayeva T. Y., Milyukova I. M., Vygodskaya N. N., Foken T., Schulze E. D. (2002). Carbon dioxide exchange of a Russian boreal forest after disturbance by wind throw. Global Change Biol, 8(3), pp. 231-246.

11. Kowalski S., Sartore M., Burlett R., Berbigier P., Loustau D. (2003). The annual carbon budget of a French pine forest (Pinus pinaster) following harvest. Global Change Biol., 9(7), pp. 1051-1065.

12. Kurbatova J., Li C., Varlagin A., xiao x., Vygodskaya N. (2008). Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia. Biogeosciences 5, pp. 969–980.

13. Kuricheva O., Mamkin V., Sandlersky R., Puzachenko J., Varlagin A., Kurbatova J. (2017). Radiative entropy production along the paludification gradient in the Southern Taiga. Entropy, 19(1), p. 43.

14. Levashova N. T., Muhartova J. V., Olchev A.V. (2017) Two approaches to describing the turbulent exchange within the atmospheric surface layer. Mathematical Models and Computer Simulations, 9(6), pp. 697–707

15. Ma Y., Geng Y., Huang Y., Shi Y., Niklaus P.A., Jin-Sheng B.S. (2013). Effect of clear-cutting silviculture on soil respiration in a subtropical forest of China. Journal of Plant Ecology 6(5), pp. 335-348.

16. Masek J.G., and Collatz G.J. (2006). Estimating forest carbon fluxes in a disturbed southeastern landscape: Integration of remote sensing, forest inventory, and biogeochemical modeling. Journal of Geophysical Research: Biogeosciences 111, G01006.

17. Machimura T., Kobayashi Y., Hirano T., Lopez L., Fukuda M., Fedorov A. N. (2005). Change of carbon dioxide budget during three years after deforestation in eastern Siberian larch forest. J. Agric. Meteorol., 60(5), pp. 653-656.

18. Mamkin V., Kurbatova J., Avilov V., Mukhartova Y., Krupenko A., Ivanov D., Levashova N., Olchev A. (2016). Changes in net ecosystem exchange of CO2, latent and sensible heat fluxes in a recently clear-cut spruce forest in western Russia: results from an experimental and modeling analysis. Environ. Res. Lett., 11(12), p. 125012.

19. Mamkin V., Kurbatova J., Avilov V., Ivanov D., Kuricheva O., Varlagin A., Yaseneva I., Olchev A. (2019) Energy and CO2 exchange in an undisturbed spruce forest and clear-cut in the southern taiga. Agricultural and Forest Meteorology 265, pp. 252–268.

20. Matthews B., Mayer M., Katzensteiner K., Godbold D. L., Schume, H. (2017). Turbulent energy and carbon dioxide exchange along an early–successional windthrow chronosequence in the European Alps. Agric. For. Meteorol. 232 (15), pp. 576-594

21. Mauder M., Foken T. (2006). Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorologische zeitschrift, 15, pp. 597-609.

22. Migliavacca M., Meroni M., Manca G., Matteucci G., Montagnani L., Grassi G., zenone T., Teobaldelli M., Goded I., Colombo R., Seufert G. (2009). Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions. Agr. For. Meteorol. 149, pp. 1460–1476

23. Molchanov A.G., Kurbatova Yu. A., Olchev A.V., (2017). Effect of Clear-Cutting on Soil CO2 Emission. Biology Bulletin, 44 (2), pp. 218-223.

24. Mukhartova Yu. V., Levashova N. T., Olchev A. V., Shapkina N. E. (2015) Application of a 2D model for describing the turbulent transfer of CO2 in a spatially heterogeneous vegetation cover. Moscow University Physics Bulletin, 70(1), pp. 14-21

25. Mukhartova Yu.V., Krupenko A.S., Mangura P.A., Levashova N.T. (2017). A two-dimensional hydrodynamic model of turbulent transfer of CO2 and H2O over a heterogeneous land surface. IOP Conf. Ser.: Earth Environ. Sci. 107, p. 012103.

26. Novenko E., Tsyganov A.N., Olchev A.V. (2018) Palаeoecological data as a tool to predict possible future vegetation changes in the boreal forest zone of European Russia: a case study from the Central Forest Biosphere Reserve. IOP Conf. Series: Earth and Environmental Science, 107, p. 012104

27. Olchev A., Radler K., Sogachev A., Panferov O., Gravenhorst G. (2009). Application of a three-dimensional model for assessing effects of small clear-cuttings on radiation and soil temperature. Ecol. Modell., 220(21), pp. 3046-3056.

28. Olchev A.V., Mukhartova Yu.V., Levashova N.T., Volkova E.M., Ryzhova M.S., Mangura P.A. (2017). The Influence of the Spatial Heterogeneity of Vegetation Cover and Surface Topography on Vertical CO2 Fluxes within the Atmospheric Surface Layer. Izvestiya, Atmospheric and Oceanic Physics, 53(5), pp. 539-549.

29. Paul-Limoges E., Black T. A., Christen A., Nesic z., Jassal R. S., (2015). Effect of clearcut harvesting on the carbon balance of a Douglas-fir forest. Agric. For. Meteorol. 203, pp. 30-42.

30. Peel M.C., Finlayson B.L., McMahon T.A. (2007). Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth. Syst. Sci., 11, pp. 1633–1644.

31. Pypker T. G., Fredeen A. L., (2002). Ecosystem CO2 flux over two growing seasons for a sub- Boreal clearcut 5 and 6 years after harvest. Agric. For. Meteorol, 114(1-2), pp. 15-30.

32. Radler K., Oltchev A., Panferov O., Klinck U., Gravenhorst G. (2010). Radiation and temperature responses to a small clear-cut in a spruce forest. The Open Geography Journal 3, pp. 103-114.

33. Rodrigues A., Pita G., Mateus J., Kurz-Besson C., Casquilho M., Cerasoli S., Pereira J. (2011). Eight years of continuous carbon fluxes measurements in a Portuguese eucalypt stand under two main events: Drought and felling. Agricultural and Forest Meteorology, 151(4), pp. 493-507.

34. Sogachev A., Panferov O. (2006). Modification of two-equation models to account for plant drag. Bound. Lay. Meteorol. 121(2), pp. 229-266.

35. Williams C. A., Vanderhoof M. K., Khomik M., Ghimire B. (2014). Post–clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment. Global Change Biol., 20(3), pp. 992-1007.

36. Willmott C.J. and Feddema J.J., (1992). A more rational climatic moisture index. Professional Geographer 44, pp. 84-88.

37. Wutzler T., Lucas-Moffat A., Migliavacca M., Knauer J., Sickel K., Šigut L., Menzer O., Reichstein, M. (2018). Basic and extensible post-processing of eddy covariance flux data with REddyProc, Biogeosciences, 15, pp. 5015-5030.

38. Wyngaard J. C. (2010). Turbulence in the Atmosphere. Cambridge: Cambridge University press. zamolodchikov D. G., Grabovskii V. I., Shulyak P. P., Chestnykh, O. V. (2017). Recent decrease in carbon sink to Russian forests. Doklady Biological Sciences 476(1), pp. 200-202.


For citations:

Mamkin V.V., Mukhartova Yu.V., Diachenko M.S., Kurbatova J.A. Three-Year Variability Of Energy And Carbon Dioxide Fluxes At Clear-Cut Forest Site In The European Southern Taiga. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(2):197-212.

Views: 602

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)