Advanced search

Effects Of The 2015–2016 El Niño Event On Energy And CO2 Fluxes Of A Tropical Rainforest In Central Sulawesi, Indonesia

Full Text:


The influence  of the very strong 2015–16 El Niño event on local and regional meteorological   conditions,  as  well as  on  energy and CO2   fluxes in  a  mountainous primary  tropical  rainforest  was investigated  using ERA-Interim  reanalysis  data as well as meteorological  and eddy covariance  flux measurements   from  Central Sulawesi  in Indonesia. The El Niño event led to a strong increase of incoming monthly solar radiation and air temperature, simultaneously with the increasing Niño4 index. Monthly precipitation first strongly decreased  and then increased  reaching  a maximum  in 3–4 months after El  Niño culmination.  Ecosystem  respiration  increased  while gross  primary  production showed only a weak response  to the El  Niño event resulting  in a positive  anomaly  of net ecosystem CO2 exchange (reduced CO2 uptake). The changes of key meteorological parameters and fluxes caused  by the strong  El Niño event of 2015–16  differed from the effects  of moderate  El Niño events  observed  during  the period  2003-2008,  where net ecosystem CO2 exchange  remained largely unaffected. In contrast to earlier moderate  El Niño events, the strong El Niño 2015–16 affected mostly the air temperature  resulting  in a weakening of the net carbon  sink at the rainforest site in Central Sulawesi, Indonesia.

About the Authors

Daria Gushchina
Moscow State University
Russian Federation

Faculty of Geography.


Florian Heimsch
University of Goettingen



Alexander Osipov
Moscow State University
Russian Federation

Faculty of Geography.


Tania June
Bogor Agricultural University

Department of Geophysics and Meteorology.


Abdul Rauf
Universitas Tadulako

Heiner Kreilein
University of Goettingen



Oleg Panferov
University of Applied Sciences

Department of Climatology and Climate Protection, Faculty of Life Sciences and Engineering.

Bingen am Rhein.

Alexander Olchev
Moscow State University
Russian Federation

Faculty of Geography.


Alexander Knohl
University of Goettingen




1. Alisov B.P. (1954). Die Klimate der Erde. Berlin: Deutscher Verlag der Wissenschaften. 277 pp.

2. Aubinet M., Vesala T. and Papale D. (2012). Eddy covariance. A practical guide to measurement and data analysis. Springer. 438 pp.

3. Ashok K., Behera S. K., Rao S. A., Weng H., Yamagata T. (2007). El Niño Modoki and its possible teleconnection. Journal of Geophysical Research, 112, C11007.

4. Chatfield C. (2004). The Analysis of Time series, An Introduction, 6th ed. New York: Chapman & Hall/CRC, 333 pp.

5. Chen D. and Chen H.W. (2013) Using the Koppen classification to quantify climate variation and change: An example for 1901-2010. Environmental Development, 6, pp. 69-79

6. Ciais P., Piao S.-L., Cadule P., Friedlingstein P., and Chedin A. (2009). Variability and recent trends in the African terrestrial carbon balance. Biogeosciences, 6, pp. 1935-1948.

7. Corlett R., Primack R. (2006). Tropical rainforests and the need for cross-continental comparisons. Trends in Ecology and Evolution, 21 (2), pp. 104–110.

8. Grace J., Lloyd J., McIntyre J., Miranda A., Meir P., Miranda H., Nobre C., Moncrieff J.B., Massheder J.M., Malhi Y., Wright I. and Gash J.C. (1995). Carbon dioxide uptake by an undisturbed tropical rain forest in south-west Amazonia, 1992 to 1993. Science, 270, pp. 778-780.

9. Dee D.P. , Uppala S.M. , Simmons A.J. , Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A. , Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M. , van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M. , McNally A P. , Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P. , Tavolato C., Thépaut J.-N., Vitart F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), pp. 553–597.

10. Dewitte B., Gushchina D., du Penhoat Y., Lakeev S. (2002). On the importance of subsurface variability for ENSO simulation and prediction with intermediate coupled models of the tropical pacific: A case study for the 1997-1998 El Niño. Geophysical Research Letters, 29(14).

11. Diaz H.F., Hoerling M.P., and Eischeid J. K. (2001). ENSO variability, teleconnections and climate change, Int. J. Climatol., 21, pp.1845– 1862,

12. Falk U., Ibrom A., Kreilein H., Oltchev A., Gravenhorst G. (2005). Energy and water fluxes above a cacao agroforestry system in Central Sulawesi, Indonesia, indicate effects of land-use change on local climate. Meteorologische zeitschrift, 14(2), pp. 219-225.

13. Feely R.A., Wanninkhof R., Takahashi T., and Tans P. (1999). Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation. Nature, 398, pp. 597-601.

14. Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2015: How are the world’s forests changing? (Second Edition). (2016). Rome. 54 pp.

15. Grace J., Lloyd J., McIntyre J., Miranda A.C., Meir P., Miranda H.S., Nobre C., Moncrieff J., Massheder J., Malhi Y., Wright I., Gash J. (1995). Carbon dioxide uptake by an undisturbed tropical rain in Southwest Amazonia, 1992 to 1993. Science, 270(5237), pp. 778-780.

16. Gushchina D.Y, Petrosyants M.A., Semenov E.K. (1997). An empirical model of tropical tropospheric circulation during ENSO. part II. Analysis of evolution of circulation characteristics. Russian Meteorology and Hydrology, 2, pp. 8–18.

17. Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O., Townshend J.R.G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, vol. 342 (6160), pp. 850-853.

18. Hirano T., Segah H., Harada T., Limin S., June T., Hirata R., Osaki, M. (2007) Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Glob. Change Biol., 13, pp. 412–425.

19. Huffman G.J, Adler R.F., Bolvin D.T., Gu G. (2009). Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett., 36, L17808.

20. Ibrom A., Olchev A., June T., Ross T., Kreilein H., Falk U., Merklein J., Twele A., Rakkibu G., Grote S., Rauf A. and Gravenhorst G. (2007). Effects of land-use change on matter and energy exchange between ecosystems in the rain forest margin and the atmosphere. In The stability of tropical rainforest margins: Linking ecological, economic and social constraints. Eds. Tscharntke T., Leuschner C., zeller M., Guhardja E. and Bidin A., Springer Verlag, Berlin, pp. 463 – 492.

21. Ibrom A., Oltchev A., June T., Kreilein H., Rakkibu G., Ross Th., Panferov O., Gravenhorst G. (2008) Variation in photosynthetic light-use efficiency in a mountainous tropical rain forest in Indonesia. Tree Physiol., 28, pp. 499–508

22. Ichii K., Ueyama M., Kondo M., Saigusa N., Kim J., Alberto M.C., Ardö J., Euskirchen E.S., Kang M., Hirano T., Joiner J., Kobayashi H., Marchesini L.B., Merbold L., Miyata A., Saitoh T.M., Takagi K., Varlagin A., Bret-Harte M.S., Kitamura K., Kosugi Y., Kotani A., Kumar K., Li S.G., Machimura T., Matsuura Y., Mizoguchi Y., Ohta T., Mukherjee S., Yanagi Y., Yasuda Y., zhang Y., zhao F. (2017). New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. Journal of Geophysical Research Biogeosciences, 122, pp. 767-795.

23. Le Quéré C., Moriarty R., Andrew R.M., Peters G.P., Ciais P., Friedlingstein P., Jones S.D., Sitch S., Tans P., Arneth A., Boden T.A., Bopp L., Bozec Y., Canadell J.G., Chevallier F., Cosca C.E., Harris I., Hoppema M., Houghton R.A., House J.I., Jain A., Johannessen T., Kato E., Keeling R.F., Kitidis V., Klein Goldewijk K., Koven C., Landa C.S., Landschützer P., Lenton A., Lima I.D., Marland G., Mathis J.T., Metzl N., Nojiri Y., Olsen A., Ono T., Peters W., Pfeil B., Poulter B., Raupach M.R., Regnier P., Rödenbeck C., Saito S., Salisbury J.E., Schuster U., Schwinger J., Séférian R., Segschneider J., Steinhoff T., Stocker B.D., Sutton A.J., Takahashi T., Tilbrook B., van der Werf G.R., Viovy N., Wang Y.-P., Wanninkhof R.; Wiltshire A., zeng N. (2015). Global carbon budget 2014. Earth System Science Data, 7(1), pp. 47–85.

24. Malhi Y., Mateus J., Migliavacca M., Misson L., Montagnani L., Moncrieff J., Moors E., Munger J.W., Nikinmaa E., Ollinger S.V., Pita G., Rebmann C., Roupsard O., Saigusa N., Sanz M.J., Seufert G., Sierra C., Smith M.-L., Tang J., Valentini R., Vesala T. and Janssens I.A. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13(12), pp. 2509-2537.

25. Malhi Y. (2010). The carbon balance of tropical forest regions, 1990–2005. Current Opinion in Environmental Sustainability, 2(4), pp. 237–244.

26. Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., Kent J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, pp. 853-858.

27. Oltchev A., Cermak J., Nadezhdina N., Tatarinov F., Tishenko A., Ibrom A., Gravenhorst G. (2002). Transpiration of a mixed forest stand: field measurements and simulation using SVAT models. Boreal Environmental Reserach, 7(4) , pp. 389-397.

28. Olchev A., Ibrom A., Ross T., Falk U., Rakkibu G., Radler K., Grote S., Kreilein H., Gravenhorst G. (2008). A modelling approach for simulation of water and carbon dioxide exchange between multi-species tropical rain forest and the atmosphere. J. Ecological Modelling, 212, pp. 122–130.

29. Olchev A., Ibrom A., Panferov O., Gushchina D., Kreilein H., Popov V., Propastin P., June T., Rauf A., Gravenhorst G., and Knohl A. (2015). Response of CO2 and H2O fluxes in a mountainous tropical rainforest in equatorial Indonesia to El Niño events. Biogeosciences, 12, pp. 6655-6667.

30. Osipov A. and Gushchina D. (2018). El Nino 2015/2016: evolution, mechanisms, and concomitant remote anomalies. Fundamental and applied climatology (in Russian), 3, pp. 54-81.

31. Panferov O., Ibrom I., Kreilein H., Oltchev A., Rauf A., June T., Gravenhorst G. and Knohl A. (2009). Between deforestation and climate impact: the Bariri Flux tower site in the primary montane rainforest of Central Sulawesi, Indonesia. The Newsletter of FLUxNET. 2(3), pp. 17-19.

32. Santoso A., McPhaden M.J., and Cai W. (2017). The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Reviews of Geophysics, 55, pp. 1079–1129.

33. Trenberth K.E., Branstator G.W., Karoly D., Kumar A., Lau N.-C., and Ropelewski C. (1997). The definition of El Nino. Bulletin of the American Meteorological Society, 78(12), pp. 2771-2777.

34. Zheleznova I.V., Gushchina D.Y. (2015). The response of global atmospheric circulation to two types of El Niño. Russian Meteorology and Hydrology, 40(3), pp. 170-179.

35. Zheleznova I. V., Gushchina D. Y. (2016). Circulation anomalies in the atmospheric centers of action during the Eastern Pacific and Central Pacific El Niño. Russian Meteorology and Hydrology, 41 (11-12), pp. 760–769.


For citations:

Gushchina D., Heimsch F., Osipov A., June T., Rauf A., Kreilein H., Panferov O., Olchev A., Knohl A. Effects Of The 2015–2016 El Niño Event On Energy And CO2 Fluxes Of A Tropical Rainforest In Central Sulawesi, Indonesia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(2):183-196.

Views: 1422

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)