Advanced search

Climate Change Indicators In Alsheikh-Badr Basin (Syria)

Full Text:


The trends and variability of climate change were studied through analyzing the trend of change in the annual temperature and rainfall averages  during  the period (1960 – 2016) in Al-Sheikh Badr Region  by using Normal  Distribution and De-Martonne index.  The results showed a (-189 mm) linear decrease in the general trend of the rainfall, associated with a (+0.9o C) increase in the general trend of the temperature between 1960 and 2016. Also, Normal distribution showed that the probability of extreme temperatures events  higher  than 17.5oC increased  from  3.3% during  the period  1960-1990  to 24.8% during the period 1991-2016. While the probability of an extreme  annual  rainfall (more than 1800 mm) decreases  from  5.3% to 4.7%,  nevertheless,  the probability  of rainfall events less than 800mm where increased.  Furthermore,  there is a significant  trend of drought in the studied area, where the De-Martonne index reaches (-10.75) through the period (1960-2016).

About the Authors

Safwan A. Mohammed
University of Debrecen

Institution of Land Utilization, Technology  and Regional Planning, Faculty of Agricultural and Food Sciences and Environmental Management.


Riad Qara Fallah
Tishreen University
Syrian Arab Republic

Department of Geography, Faculty of Arts and Humanities.



1. Abu Sada A., Abu-Allaban M., and Al-Malabeh A. (2015). Temporal and Spatial Analysis of Climate Change at Northern Jordanian Badia. Jordan Journal of Earth and Environmental Sciences, 7(2), pp. 87-93.

2. Åkesson U. and Falk K. (2015). Climate Change in Syria—trends, projections and implications. Background document for SIDA’a development of a results strategy for Syria 2015. Sida’s Helpdesk for Environment and Climate Change. SIDA, Stockholm. pp. 43.

3. Alam S. M. S. and Sharif M. (2013). Assessment of climate change scenario in the Middle-East Region. J Emerg Technol Adv Eng, 3(6), pp. 367-372.

4. Alsaleh R., Abouzakhem A., Shahawy M., and Eaid E. (2005). Analysis of Seasonal and Annual Variations in Surface Air Temperature in Syria. Damascus University Journal of Agricultural Sciences, 21(1), pp.401–424. (in Arabic).

5. Breisinger C., zhu T., Al Riffai P., Nelson G., Robertson R., Funes J., and Verner D. (2011). Global and local economic impacts of climate change in Syria and options for adaptation. International Food Policy Research Institute, Discussion Paper, 1091, 23.

6. COLD (Land Degradation Monitoring in Lebanon And Syria) (1990). Preliminary study of the integrated plan for the Syrian coastal region. (LIFE TCY/00/INT/00069/MED). Damascus, Syria.

7. Comarazamy D.E., González J.E., Luvall J.C., Rickman D.L., and Bornstein R.D. (2013). Climate impacts of land-cover and land-use changes in tropical islands under conditions of global climate change. Journal of Climate, 26(5), 1535-1550.

8. Croitoru A.E., Piticar A., Imbroane A.M., and Burada D.C. (2013). Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theoretical and applied climatology, 112(3-4), pp. 597-607. DOI:

9. De Luis M., González–Hidalgo J.C., Longares L.A., and Štepánek P. (2009). Seasonal precipitation trends in the Mediterranean Iberian Peninsula in second half of 20th century. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(9), pp. 1312-1323. DOI:

10. De Martonne E. (1926). Aréisme et indice artidite. Comptes Rendus de L’Acad Sci, Paris, 182: pp. 1395–1398.

11. Deitch M.J., Sapundjieff M.J., and Feirer S.T. (2017). Characterizing precipitation variability and trends in the world’s Mediterranean-Climate areas. Water, 9(4), pp. 259. DOI:

12. Dubrovský M., Hayes M., Duce P., Trnka M., Svoboda M., and zara P. (2014). Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Regional Environmental Change, 14(5), pp. 1907-1919. DOI:

13. Evans J.P. (2009). 21st century climate change in the Middle East. Climatic Change, 92(3-4), pp. 417-432. DOI:

14. Feidas H., Noulopoulou C., Makrogiannis T., and Bora-Senta E. (2007). Trend analysis of precipitation time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theoretical and Applied Climatology, 87(1-4), pp. 155-177.

15. Giorgi F. (2006). Climate change hot–spots. Geophysical research letters, 33(8).

16. Gonçalves M., Barrera-Escoda A., Guerreiro D., Baldasano J.M., and Cunillera, J. (2014). Seasonal to yearly assessment of temperature and precipitation trends in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971–2050). Climatic change, 122(1-2), pp. 243-256. DOI:

17. Haleme K. and Fallah R. Q. (2015). Changes of the Rainfalls Rates in Tartous Using Gamble's Distribution. Journal of Geography and Geology, 7(1), PP77-84.

18. IPCC (Intergovernmental Panel on Climate Change) (2007). Impacts, Adaptation and Vulnerability. Asia Climate Change 2007. Cambridge University Press, Cambridge, UK, 469-506.

19. Jalab A., Mahfoud I., and Ismaiel F. (2014). Temperature and rainfall changes in Lattakia, kasaab and Slenfeh during 1978-2011. Tishreen University Journal for Research and Scientific Studies - Biological Sciences Series, 36(3), pp. 286-303 (In Arabic).

20. Jorgenson A.K., Fiske S., Hubacek K., Li J., McGovern T., Rick T., ... and zycherman A. (2019). Social science perspectives on drivers of and responses to global climate change. Wiley Interdisciplinary Reviews: Climate Change, 10(1), e554.

21. Kelley C. P., Mohtadi S., Cane M. A., Seager R., and Kushnir Y. (2015). Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proceedings of the National Academy of Sciences, 201421533. DOI:

22. Kousari M.R., Ekhtesasi M.R., Tazeh M., Naeini M.A.S., and zarch M.A.A. (2011). An investigation of the Iranian climatic changes by considering the precipitation, temperature, and relative humidity parameters. Theoretical and Applied Climatology, 103(3-4), pp. 321-335. DOI:

23. Kutiel H., Maheras P., and Guika S. (1996). Circulation and extreme rainfall conditions in the eastern Mediterranean during the last century. International Journal of Climatology, 16(1), pp. 73-92. DOI:<73::AID-JOC997>3.0.CO;2-G.

24. Lelieveld J., Proestos Y., Hadjinicolaou P., Tanarhte M., Tyrlis E., and zittis G. (2016). Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change, 137(1-2), pp.245-260. DOI:

25. Lionello P., Abrantes F., Gacic M., Planton S., Trigo R., and Ulbrich U. (2014). The climate of the Mediterranean region: research progress and climate change impacts. DOI:

26. Mathbout S., Lopez-Bustins J. A., Martin-Vide J., Bech J., and Rodrigo F. S. (2018). Spatial and temporal analysis of drought variability at several time scales in Syria during 1961–2012. Atmospheric Research, 200, pp. 153-168. DOI:

27. Ministry of Agriculture (2015). Land use in Syrian. Damascus, Syria.

28. Mohammed S., Kbibo I., Alshihabi O., and Mahfoud E. (2016). Studying rainfall changes and water erosion of soil by using the WEPP model in Lattakia, Syria. Journal of Agricultural Sciences, 61(4), pp. 375-386. DOI:

29. Nouaceur z. and Murărescu O. (2016). Rainfall variability and trend analysis of annual rainfall in North Africa. International Journal of Atmospheric Sciences, 2016. DOI:

30. PAP/RAC (Regional Activity Centre for Priority Action Programme) (1990). Preliminary study of the integrated plan for the Syrian coastal region, P.7 (CCP/1988-1989/SY/PS). Split, Croatia.

31. Philandras C.M., Nastos P.T., Kapsomenakis J., Douvis K.C., Tselioudis G., and zerefos C.S. (2011). Long term precipitation trends and variability within the Mediterranean region. Natural Hazards and Earth System Sciences, 11(12), pp. 3235-3250. DOI:

32. Skaf M. and Mathbout S. (2010). Drought changes over last five decades in Syria. Economics of drought and drought preparedness in a climate change context, pp. 107-112.

33. Skaf M. and Saker R. (2015). Changes in seasonal and annual precipitation characteristics in the Syrian coastal region during the period 1960-2010. Tishreen University Journal for Research and Scientific Studies - Biological Sciences Series, 73(2), pp. 218-232. (In Arabic).

34. Tanarhte M., Hadjinicolaou P., and Lelieveld J. (2012). Intercomparison of temperature and precipitation data sets based on observations in the Mediterranean and the Middle East. Journal of Geophysical Research: Atmospheres, 117(D12). DOI:

35. Toreti A., Giannakaki P., and Martius O. (2016). Precipitation extremes in the Mediterranean region and associated upper-level synoptic-scale flow structures. Climate dynamics, 47(5-6), pp. 1925-1941. DOI:

36. Türkeş M. (1998). Influence of geopotential heights, cyclone frequency and Southern Oscillation on rainfall variations in Turkey. International Journal of Climatology: A Journal of the Royal Meteorological Society, 18(6), pp. 649-680. DOI:<649::AID-JOC269>3.0.CO;2-3.

37. Zarenistanak M., Dhorde A.G., and Kripalani R.H. (2014). Temperature analysis over southwest Iran: trends and projections. Theoretical and applied climatology, 116(1-2), pp. 103-117. DOI:

38. Zarghami M., Abdi A., Babaeian I., Hassanzadeh Y., and Kanani R. (2011). Impacts of climate change on runoffs in East Azerbaijan, Iran. Global and Planetary Change, 78(3-4), pp.137-146. DOI:

39. Zytoon M. and Shehadeh M. (2015). Climate Change Indicators in the North of Jordan. Dirasat: Human and Social Sciences, 42(2), pp. 1467–1486.


For citations:

Mohammed S.A., Fallah R.Q. Climate Change Indicators In Alsheikh-Badr Basin (Syria). GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(2):87-96.

Views: 1328

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)