Advanced search

Land Surface Temperature Dynamics In Dry Season 2015-2016 According To Landsat 8 Data In The South-East Region of Vietnam

Full Text:


Located in Southeast Asia, Vietnam is one of the most severely affected countries by climate change and faces to series of challenges related to climate change, in which droughts are one of the most serious natural disasters. Land surface temperature (LST) is important factor in evaluating soil moisture and drought phenomenon. Remote sensing technique with many advantages, compared with traditional methods, can be used effectively for retrieving LST. This article presents study on the application of LANDSAT 8 multi - temporal data for monitoring LST changes in dry season 2015 - 2016 in Loc Ninh district, Binh Phuoc province in Southeast region of Vietnam. LST was derived using Split-Window (SW) algorithm. The results showed that the LST at the end of 2015 - 2016 dry seasons (in February and March) is much higher than at the early of dry season. The area with LST higher than 309 K increases very fast in dry season 2015 - 2016, from less than 1% of the total study area in November and December to 19.59% in February and 30.74% in March. The results obtained in this study can be used to create the LST distribution map and to monitor drought phenomenon.

About the Authors

Q. Kh. Nguyen
Hanoi University of Mining and Geology, North Tuliem District
Viet Nam

Quang Khanh Nguyen


Le H. Trinh
Le Quy Don Technical University, Hoang Quoc Viet Street
Viet Nam

Le Hung Trinh


Kh. H. Dao
Le Quy Don Technical University, Hoang Quoc Viet Street
Viet Nam

Khanh Hoai Dao


N. D. Dang
Vietnam Institute of Geodesy and Cartography, Hoang Quoc Viet Street
Viet Nam

Nhu Duan Dang



1. Alshaikh A.Y (2015). Space application for drought assessment in Wadi-Dama (West Tabouk), KSA. The Egyptian Journal of Remote Sensing and Space Science, 18, 543 - 553.

2. Balling R.C., Brazel S.W. (1988). High - resolution surface temperature patterns in a complex urban Terrain. Photogrammetric engineering and Remote sensing, 54(9), 1289 - 1293.

3. Cai Q., Ki E., Jiang R. (2017). Analysis of the relationship between land surface temperature and land cover changes using multi-temporal satellite data. Nature Environment and Pollution Technology, 16(4), 1035 - 1042.

4. Carnahan W.H., Larson R.C. (1990). An analysis of an urban heat sink. Remote Sensing of Environment, 33(1), 65-71.

5. Chen J., Wang C., Jiang H., Mao L., Yu Z. (2011). Estimating soil moisture using temperature - vegetation dryness index (TVDI) in the Huang-huai-hai (HHH) plain. International Journal of Remote Sensing, 32, 1165 - 1177.

6. Cueto G., Jauregui Ostos E., Toudert D., Tejeda Martinez A. (2007). Detection of the urban heat island in Mexicali and its relationship with land use. Atmosfera, 20(2), 111 - 131.

7. Du C., Ren H., Qin Q., Meng J., Li J. (2014). Split-window algorithm for estimating land surface temperature from Landsat 8 TIRS data. International Geoscience Remote Sensing Symposium 3578-3581,

8. Galve J.M., Coll C., CasellesV., Valor E., Mira M. (2008). Comparison of split-window and single-chanel methods for land surface temperature retrieval from MODIS and ASTER data. International Geoscience Remote Sensing Symposium 3:294 - 297,

9. Grishchenko M.Y. (2012). ETM+ thermal infrared imagery application for Moscow urban heat island study. Current Problems in Remote Sensing of the Earth from Space, 9(4), 95101 (In Russian).

10. Jimenez-Munoz J.C, Sobrino J.A., Skokovic D., Mattar C., Cristobal J. (2014). LST retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 10, 1840-1843, doi: 10.1109/LGRS.2014.2312032.

11. Julien Y., Sobrino J.A. (2009). The yearly land cover dynamics method: an analysis of global vegetation from NDVI and LST parameters. Remote Sensing of Environment, 113, 329 -334.

12. Kumar K.S., Bhaskar P.U., Padmakumari K. (2012). Estimation of land surface temperature to study urban heat island effect using LANDSAT ETM+ image. International journal of Engineering Science and technology, 4(2), 771 - 778.

13. Huazhong R., Du C., Qin Q., Liu R. (2014). Atmospheric water vapor retrieval from Landsat 8 and its validation, IEEE International Geoscience and Remote Sensing Symposium, 3045 -3048, doi: 10.1109/IGARSS.2014.6947119.

14. Hyung Moo Kim, Beob Kyun Kim, Kang Soo You (2005). A statistic correlation analysis algorithm between land surface temperature and vegetation index. International Journal of Information Processing Systems, 1(1), 102 - 106.

15. Lambin T.R., Ehrlich D. (1996). The surface temperature - vegetation index space for land cover and land cover change analysis. International Journal of Remote Sensing, 17(3), 163 - 187.

16. Landsat. usgs. gov, (2018). Landsat 8 (L8) data users handbook, Version 3.0. [online] Available at [Accessed 31 October 2018]

17. Li S., Jiang G. (2018). Land surface temperature retrieval from Landsat-8 data with the ggeneralized split-window aalgorithm. IEEE Access, Vol. 6, 18149-18162, doi: 10.1109/ACCESS.2018.2818741.

18. Lo C.P., Quattochi D.A., Luvall J.C. (1997). Application of high resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. International Journal of Remote Sensing, 18, 287 - 304.

19. Locninh. binhphuoc. gov. vn, (2018). Locninh district Official Website. [online] Available at [Accessed 20 October 2018]

20. Mallick J., Kant Y., Bharath B.D. (2008). Estimation of land surface temperature over Delhi using LANDSAT 7 ETM+. Geophysics Union, 3, 131 - 140.

21. Marchukov V.S., Trinh L.H. (2013). Monitoring land surface temperature using LANDSAT thermal infrared image. Izvestiya Vuzov «Geodesy and Aerophotography», 6, 41 - 43 (In Russian).

22. Mira M., Valor E., Boluda R., Caselles V., Coll C. (2007). Influence of the soil moisture effect on the thermal infrared emissivity. Tethes, 4, 3 - 9, doi: m10.3369/Tethys.2007.4.01.

23. Parida B.R., Oinam B., Patel N.R., Sharma N., Kandwal R., Hazarika M.K. (2008). Land surface temperature variation in relation to vegetation types using MODIS satellite data in Gujarat state of India. International Journal of Remote Sensing, 29(14), 4219 - 4235.

24. Rongali G., Keshari A.K., Gosain A.K., Khosa R. (2018). Split-window algorithm for retrieval of land surface temperature using Landsat 8 thermal infrared data. Journal of Geovisualization and Spatial Analysis, Published online 05 September 2018, Springer, 19 pp.

25. Rouse J.W., Hass R.H., Schell J.A., Deering D.W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. In: Earth Resources Technology Satellite-1 Symposium, 3, Washington- DC, p. 309-317

26. Rozenstein O., Qin Z., Derimian Y., Karnieli A. (2014). Derivation of land surface temperature for landsat-8 TIRS using a split window algorithm. Sensors 14:5768-5780,

27. Sandholt I., Rasmussen K., Anderson J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of the surface moisture status. Remote Sensing of Environment, 79, 213-224.

28. Shang Y, Hu Q., Liu G., Zhang H. (2017). Winter wheat drought monitoring and comprehensive risk assessment: case study of Xingtai administrative district in North China, Journal of Environmental Science and Engineering, A6, 135 - 143.

29. Sobrino J.A., Jimenez-Munoz J.C., Zarco-Tejada PJ., Guadalupe Sepulcre-Canto, Eduardo de Miguel (2006). Land surface temperature derived from airborne hyperspectral scanner thermal infrared data. Remote Sensing of Environment, 102, 99 - 115.

30. Skokovic D., Sobrino J.A., Jimenez Munoz J.C., Soria G., Julien Y, Mattar C., Cristobal J. (2014). Calibration and validation of land surface temperature for Landsat8- TIRS sensor TIRS Landsat-8 characteristics. Land Product Validation and Evolution ESA/ESRIN 27.

31. Tang B.H., Wu H., Li C., Li Z.H. (2011). Estimation of broadband surface emissivity from narrowband emissivities. Optical Express, 19, 185 - 192.

32. Thakur P, Gosavi V. (2018). Estimation of temporal land surface temperature using thermal remote sensing of Landsat 8 (OLI) and Landsat 7 (ETM+): A case study in Sainj river basin, Himachal Pradesh, India. Environment & We: International Journal of Science & Technology, Vol. 13, 29 - 45.

33. Tran T.V., Hoang T.L., Le V.T. (2009). Thermal remote sensing method in sudy on urban surface temperature distribution. Vietnam Journal of Earth Sciences, 31(2), 168 - 177.

34. Trinh L.H. (2014). Studies of land surface temperature distribution using LANDSAT multispectral image. Vietnam Journal of Earth Sciences, 36(1), 82 - 89.

35. Ulivieri C., Castronuovo M., Francioni R., Cardillo A. (1994). A split window algorithm for estimating land surface temperature from satellites. Advanced Space Research 14:59-65,

36. Valor E., Caselles V. (1996). Mapping land surface emissivity from NDVI. Application to European African and South American areas. Remote Sensing of Environment, 57, 167 -184.

37. Van de Griend A.A., Owen M. (1993). On the relationship between thermal emissivity and the normalized difference vegetation index for natural surface. International Journal of Remote Sensing, 14, 1119 - 1131.

38. Vietnam assessment report on climate change (VARCC) (2009), Institute of strategy and policy on natural resources and environment. Hanoi, 127 pp.

39. Vlassova L., Perez-Cabello F., Nieto H., Martin P., Riaflo D., de la Riva J. (2014). Assessment of methods for land surface temperature retrieval from Landsat 5 TM images applicable to multiscale tree-grass ecosystem modeling, Remote Sensing, 6, 4345-4368; doi:10.3390/rs6054345.

40. Yu X., Guo X., Wu X. (2014). Land surface temperature retrieval from Landsat 8 TIRS -Comparison between radiative transfer equation based method, split window algorithm and single channel method, Remote Sensing, 6, 9829 - 9852, doi:10.3390/rs6109829.

41. Zverev A.T., Trinh L.H. (2015). Monitoring soil moisture using LANDSAT multispectral images. Issledovanie Zemli iz Kosmosa, 6, 62 - 67 (In Russian).

For citation:

Nguyen Q.K., Trinh L.H., Dao K.H., Dang N.D. Land Surface Temperature Dynamics In Dry Season 2015-2016 According To Landsat 8 Data In The South-East Region of Vietnam. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(1):75-87.

Views: 59

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)