Interrelation Between Glacier Summer Mass Balance And Runoff In Mountain River Basins
https://doi.org/10.24057/2071-9388-2018-26
Abstract
Measurements of summer mass balance Bs, made over the period 1946-2016, on 56 continental glaciers, located in the basins of mountain rivers in 14 countries, were analysed for the purpose of resolving several tasks: (a) constructing physically based interrelations between river flow Wbas and Bs; (b) estimating the representativeness of local measurement of Bs for enhancement of hydrological computations and for control of modelled values Wbas; and (c) use of time series of Bs for the evaluation of norms and extrema of Wbas. Results of the study of the outlined problem serve as the basis for making the transition of local glaciological characteristics to the basin-wide level by using the relationship between runoff and summer balance of glaciers. It includes also analysis and conclusions on the spatial and temporal homogeneity of averaging glaciological mass balance data by the sampling method.
Keywords
About the Authors
V. KonovalovRussian Federation
Vladimir Konovalov
MoscowE. Rets
Russian Federation
Ekaterina Rets
Moscow
N. Pimankina
Kazakhstan
Nina Pimankina
AlmatyReferences
1. Aktru Glacier. (1987). Lednik Aktru. Leningrad: Gidrometeoizdat. (in Russian)
2. Alexeev G.A. (1971). Objective methods of smoothing and normalization of correlation dependencies. Leningrad: Hydrometeoizdat. (in Russian with English summary)
3. Bodo B.A. (2000). Monthly Discharges for 2400 Rivers and Streams of the former Soviet Union [FSU].
4. Borovikova L.N, Denisov Yu.M, Trofimova E.B. and Shentsis I.D. (1972). Mathematical modelling of mountain rivers runoff process. Leningrad: Hydrometeoizdat. (in Russian)
5. Braithwaite R.J. (2009). After six decades of monitoring glacier mass balance, we still need data but it should be richer data. Annals of Glaciology, 50, pp. 191-197.
6. Cogley J.G., Hock R., Rasmussen L.A., Arendt A.A., Bauder A, Braithwaite R.J., Jansson P., Kaser G., Möller M., Nicholson L. and Zemp M. (2011). Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris.
7. Dahlke H.E., Lyon S.W., Stedinger J.R., Rosqvist G., and Jansson P. (2012). Contrasting trends in floods for two sub-arctic catchments in northern Sweden – does glacier presence matter? Hydrology and Earth System Sciences, 16, pp. 2123–2141. Available at: http://www.hydrol-earth-syst-sci.net/16/2123/2012/.doi:10.5194/hess-16-2123-2012
8. Davaze L., Rabatel A., Arnaud Y., Sirguey P., Six D., Letreguilly A., and Dumont M. (2018). Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data. The Cryosphere, 12, pp. 271-286. doi: https://doi.org/10.5194/tc-12-271-2018
9. Dyurgerov M. and Meier M.F. (2005). Glaciers and the Changing Earth System: A 2004 Snapshot. Occasional Paper 58: Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO.
10. Dzhankuat Glacier. (1978). Lednik Djankuat. Leningrad: Gidrometeoizdat. (in Russian)
11. Escher-Vetter H. and Reinwarth O. (1994). Two decades of runoff measurements (1974 to 1993) at the Pegelstation Vernagtbach/Oetztal Alps. Zeitschrift für Gletscherkunde und Glazialgeologie, Bd. 30 (1-2), pp. 53-98.
12. Fluctuations of Glaciers Database. (2017). World Glacier Monitoring Service, Zurich, Switzerland. DOI:10.5904/wgms-fog-2017-10. Available at: http://dx.doi.org/10.5904/wgms-fog-2017-10
13. Fountain A.G., Hoffman M.J., Granshaw F., and Riedel J. (2009). The ‘benchmark glacier’ concept – does it work? Lessons from the North Cascade Range, USA. Annals of Glaciology, 50, pp. 163-168.
14. Kamnyanskiy G.M. (2001). Total on measurement of mass balance on the Abramov Glacier in 1967-1988). Proceeding of SANIGMI, 161(242), pp. 122-131. (in Russian)
15. Konovalov V.G. (2014). Modelling and reconstruction the parameters of rivers runoff and glaciers mass balance on the Northern Caucasus. Ice and Snow. 3, pp. 16-30. (in Russian with English summary)
16. Konovalov V.G. (2015). New approach to estimate water output from regional populations of mountain glaciers in Asia. GES. Geography, Environment, Sustainability, 8(2), pp. 13-29.
17. Konovalov V.G. and Pimankina N.V. (2016). Spatial and temporal change the components of water balance on the Northern side of ZailiiskyAlatau. Ice and Snow, 56 (4), pp. 453-471. (in Russian with English summary)
18. Kotlyakov V.M., Osipova G.B., Popovnin V.V. and Cvetkov D.G. (1997). The last publications of the World Glaciers Monitoring Service: Traditions and Progress. MGI, 82, pp. 122-136. (in Russian)
19. Kotlyakov V.M. (ed). (1984). Glaciological Dictionary. Leningrad: Gidrometeoizdat. (in Russian)
20. Kotlyakov V.M., and Smolyarova N.A. (1990). Elsevier’s Dictionary of Glaciology in Four Languages. Amsterdam: Elsevier.
21. Krimmel R.M. (2000). Water, Ice, and Meteorological Measurements at South Cascade Glacier, Washington, 1986-1991 Balance Years. U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 00-4006, 77 p.
22. Mernild S.H., Lipscomb W.H., Bahr D.B., Radić V. and Zemp M. (2013). Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties. The Cryosphere, 7, pp. 1565-1577. DOI: https://doi.org/10.5194/tc-7-1565-2013
23. Oosterbaan R.J. (1994). Frequency and regression analysis of hydrologic data. Part I : Frequency analysis. Chapter 6 in: H.P.Ritzema (Ed.), Drainage Principles and Applications, Publication 16, second revised edition. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. ISBN 90 70754 3 39.
24. Rets E., Chizhova J., Budantseva N., Frolova N., Kireeva M., Loshakova N., Tokarev I., Vasil’chuk Y. (2017). Evaluation of glacier melt contribution to runoff in the north Caucasus alpine catchments using isotopic methods and energy balance modeling. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 11, 3, pp. 4–19. https://doi.org/10.24057/2071-93882017-10-3-4-19
25. Rets E.P., Dzhamalov R.G., Kireeva M.B., Frolova N.L., Durmanov I.N., Telegina A.A., Telegina E.A., Grigoriev V.Y. (2018). RECENT TRENDS Of RIVER RUNOff IN THE NORTH CAUCASUS. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY, 11, 3, pp. 61-70. https://doi.org/10.24057/2071-9388-2018-11-3-61-70
26. Rets E.P., Frolova N.L. and Popovnin V.V. (2011). Modelling the melting of mountain glacier surface. Ice and Snow, 4, pp. 42-31.
27. RGI Consortium. (2017). A Dataset of Global Glacier Outlines: Version 6.0. DOI: https://doi.org/10.7265/N5-RGI-60.
28. NWIS Site Information for Alaska: Site Inventory Official Website. [online]
29. Available at: https://waterdata.usgs.gov/ak/nwis/inventory/?site_no=15478040&agency_cd=USGS [Accessed 29 Nov. 2018].
30. Vilesov E.N. and Uvarov V.N. (2001). Evolution of present day glaciation in Zailiisky Alatau over the 20 century. Almaty: Kazak University. (in Russian with English summary).
31. WaSiM-ETH. Official Website. [online] WaSiM model. (2015). Available at: http://www.wasim.ch/en/the_model.html [Accessed 06 June. 2018].
32. Zemp M., Hoelzle M. and Haeberli W. (2009). Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Annals of Glaciology, 50, pp. 101-111.
33. Zemp M., Frey H., Gärtner-Roer I., Nussbaumer S.U., Hoelzle M., Paul F., Haeberli W., Denzinger F., Ahlstrøm A.P., Anderson B., Bajracharya S., Baroni C., Braun L.N., Cáceres B.E., Casassa G., Cobos G., Dávila L.R., Delgado Granados H., Demuth M., Espizua L., Fischer A., Fujita K., Gadek B., Ghazanfar A., Hagen J.O., Holmlund P., Karimi N., Li Z., Pelto M., Pitte P., Popovnin V.V., Portocarrero C.A., Prinz R., Sangewar C.V., Severskiy I., Sigurðsson O., Soruco A., Usubaliev R., Vincent C. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), pp. 745-761. DOI: 10.3189/2015JoG15J017
Supplementary files
![]() |
1. Untitled | |
Subject | ||
Type | Research Instrument | |
Download
(41KB)
|
Indexing metadata ▾ |
Review
For citations:
Konovalov V., Rets E., Pimankina N. Interrelation Between Glacier Summer Mass Balance And Runoff In Mountain River Basins. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(1):23-33. https://doi.org/10.24057/2071-9388-2018-26