Advanced search


Full Text:


Urban temperature anomalies, frequently referred to as the urban heat islands (UHIs), are of the most distinct and influential climatic factors with significant impact on urban life and environment. However, UHIs in high latitudes are still studied only fragmentary. There is a knowledge gap related to the urban temperature distinction with respect to local temperature anomalies of natural surface types. This study extends upon our recent high latitude regional-scale climatic survey in 28 cities in the Northern West Siberia (NWS) region. Based on MODIS land surface temperature (LST) products covering 15 years between 2001 and 2015, it was revealed that all 28 cities have significant surface urban heat islands (SUHIs). The strong statistical dependence (r = 0.73) on endogenous factors such as city size and the population was found. It was suggested that exogenous factors such as the background LC types could be significant as well. This study presents the analysis of the exogenous factors shaping the apparent SUHI intensities. The major contribution to the SUHI was revealed for water, sparse vegetation, grassland, and shrubland. There are no clear dependence between the partial SUHI intensity and the area fraction occupied by the given LC type. The mechanisms and pathways of the SUHI maintenance cannot be inferred solely from the remote sensing data. Further understanding requires numerical experiments with turbulence-resolving models.

About the Authors

I. Esau
Nansen Environmental and Remote Sensing Centre/Bjerknes Centre for Climate Research.
Russian Federation

V. Miles
Nansen Environmental and Remote Sensing Centre/Bjerknes Centre for Climate Research.


1. Atlaskina K., Berninger F., de Leeuw G. (2015). Satellite observations of changes in snowcovered land surface albedo during spring in the Northern Hemisphere. The Cryosphere. Vol. 9. P. 1879-1893.

2. Barichivich J., Briffa K.R., Myneni R., van der Schrier G., Dorigo W., Tucker C.J., Osborn T.J., Melvin T.M. (2014). Temperature and snow-mediated moisture controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011. Remote Sens. Vol. 6. P. 1390-1431.

3. Bonan G.B., Pollard D., Thompson S.L. (1992). Effects of boreal forest vegetation on global climate. Nature. Vol. 359. P. 716-718.

4. Bonan G.B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science. Vol. 320. P. 1444-1449.

5. Brunsell N.A., Mechem D.B., Anderson M.C. (2011). Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning. Atmos. Chem. Phys. Vol. 11. P. 34033416.

6. Chen X., Su Z., Ma Y., Cleverly J., Liddell M. (2017). An Accurate Estimate of Monthly Mean Land Surface Temperatures from MODIS Clear-Sky Retrievals. J. Hydrometeorol. Vol. 18. P. 2827-2847.

7. Comiso J. C. (2003). Warming Trends in the Arctic from Clear Sky Satellite Observations. J. Climate. Vol. 16. P. 3498-3510.

8. Clinton N., Gong P. (2013). MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Env. Vol. 134. P. 294-304.

9. Davy R., Esau I., Chernokulsky A., Outten S., Zilitinkevich S. (2017). Diurnal asymmetry to the observed global warming. Int. J. Climatol. Vol. 37. P. 79-93.

10. Davy R., Esau I. (2014). Surface air temperature variability in global climate models. Atmos. Sci. Letters. Vol. 15. P. 13-20.

11. Davy R., Esau I. (2016). Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth. Nature Comm. Vol. 7. Art. ID. 11690.

12. Davy R., Esau I., Chernokulsky A., Outten S., Zilitinkevich S. (2017). Diurnal asymmetry to the observed global warming. Int. J. Climatol. Vol. 37. P. 79-93.

13. Dudorova N., Belan B. (2015). Thermal balance of the underlying surface in Tomsk during 2004-2005. Atmos. Ocean Optics. Vol. 28. No. 4. P. 318-327.

14. Esau I., Davy R., Outten S. (2012). Complementary explanation of temperature response in the lower atmosphere. Env. Res. Letters. Vol. 7. Art. ID. 044026.

15. Esau I., Miles V. (2016). Warmer urban climates for development of green spaces in northern Siberian cities. Geogr. Env. Sustain. Vol. 9. P. 48-62.

16. Esau I., Miles V.V., Davy R., Miles M.W., Kurchatova A. (2016). Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia. Atmos. Chem. Phys. Vol. 16. P. 9563-9577.

17. Flanner M.G. (2009). Integrating Anthropogenic Heat Flux with Global Climate Models. Geophys. Res. Lett. Vol. 36. No. 2. Art. ID. L02801.

18. He J. F., Liu J. Y., Zhuang D. F., Zhang W., Liu M. L. (2007). Assessing the effect of land use/land cover change on the change of urban heat island intensity. Theor. Appl. Climatol. // Vol. 90. P. 217-226.

19. Hachem S., Duguay C. R., Allard M. (2012). Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. The Cryosphere. Vol. 6. P. 51-69.

20. Heleniak T.E. (2009). The role of attachment to place in migration decisions of the population of the Russian North. Polar Geography. Vol. 32. P. 31-60.

21. Hinkel K.M., Nelson F.E. (2007). Anthropogenic heat island at Barrow, Alaska, during winter: 2001-2005. J. Geophys. Res. Vol. 112. Art. ID. D06118

22. Hu Y., Jia G. (2010). Influence of land use change on urban heat island derived from multisensor data. Int. J. Climatol. Vol. 30. P. 1382-1395.

23. Grebenets V.I., Streletskiy D., Shiklomanov N. (2012). Geotechnical safety issues in the cities of polar regions. Geography Env. Sustainability. Vol. 5. P. 104-119.

24. Imhoff M.L., Zhang P., Wolfe R.E., Bounoua L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing Env. Vol. 114. P. 504-513.

25. Jin M., Dickinson R. E. (2010). Land surface skin temperature climatology: benefitting from the strengths of satellite observations. Enviromen. Res. Lett. Vol. 5. ID. 044004

26. Khrustalyov L., Davidova I. (2007). Forecast of climate warming and account of it at estimation of foundation reliability for buildings in permafrost zone. Earth Cryosphere. Vol. 11. P. 68-75. (in Russian)

27. Konstantinov P.I., Grishchenko M.Y., Varentsov M.I. (2015). Mapping Urban Heat Islands of Arctic Cities Using Combined Data on Field Measurements and Satellite Images Based on the Example of the City of Apatity (Murmansk Oblast). Izvestiya, Atmos. Ocean. Phys. Vol. 51. P. 992-998.

28. Konstantinov P., Varentsov M., Esau I. (2018). A high density urban temperature network deployed in several cities of Eurasian Arctic. Environ. Res. Lett. Vol. 13. ID. 075007.

29. Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift. Vol. 15. P. 259-263.

30. Lapenis A., Shvidenko A., Shepaschenko D., Nilsson S., Aiyyer A. (2005). Acclimation of Russian forests to recent changes in climate. Global Change Biology. Vol. 11. P. 2090-2102.

31. Lee X., Goulden M.L., Hollinger D.Y. et al. (2011). Observed increase in local cooling effect of deforestation at higher latitudes. Nature. Vol. 479. P. 384-387.

32. Lemonsu A., Bélair S., Mailhot J., Benjamin M., Morneau G., Harvey B., Chagnon F., Jean M., Voogt J. (2008). Overview and First Results of the Montreal Urban Snow Experiment 2005. J. Appl. Meteorol. Climatol. Vol. 47. P. 59-75.

33. Li Z.-L., Tang B.-H., Wu H., Ren H., Yan G., Wan Z., Trigo I.F., Sobrino J.A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing Env. Vol. 131. P. 14-37.

34. Li Y., Zhao M., Motesharrei S., Mu Q., Kalnay E., Li S. (2015). Local cooling and warming effects of forests based on satellite observations. Nature Comm. Vol. 6. Art. ID. 6603.

35. Li B., Liu Z., Nan Y., Li S., Yang Y. (2018). Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia. Sustainability. Vol. 10. ID. 2637

36. Lowry W. P. (1977). Empirical Estimation of Urban Effects on Climate: A Problem Analysis. J. Appl. Meteorol. Vol. 16. P. 129-135.

37. Magee N., Curtis J., Wendler G. (1999). The Urban Heat Island Effect at Fairbanks, Alaska. Theor. Appl. Climatol. Vol. 64. P. 39-47.

38. Makhrovskaya A.V., Vaytens M.Y., Panov L.K., Belinskiy A.Y. (1977). Urban planning and construction in the kola north (Part I). Polar Geography. Vol. 1. P. 205-216.

39. Metz M., Andreo V., Neteler M. (2017). A New Fully Gap-Free Time Series of Land Surface Temperature from MODIS LST Data. Remote Sens. Vol. 9. P. 1333

40. Miles V.V., Esau I. (2016). Spatial heterogeneity of greening and browning between and within bioclimatic zones in northern West Siberia. Environ. Res. Lett. 15002

41. Miles V., Esau I. (2017). Seasonal and Spatial Characteristics of Urban Heat Islands (UHIs) in Northern West Siberian Cities. Remote Sensing. Vol. 9. Art. ID. 989

42. Mokhov I.I. (2009). Links between urban heat island intensity and its size and urban population. Doklady RAS. Vol. 427. P. 530-533.

43. Mori K., Sato T. (2015). Evaluating the Role of Snow Cover in Urban Canopy Layer on the Urban Heat Island in Sapporo, Japan with a Regional Climate Model. J. Meteorol. Soc. Japan. Vol. 93. P. 581-592.

44. Muster S., Langer M., Abnizova A., Young K., Boike J. (2015). Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes. Remote Sens. Environ. V. 168. P. 1-12.

45. Nielsen-Englyst P., Høyer J.L., Madsen K.S., Dybkjær G., Tonboe R., Alerskans E. (2018). In situ observed relationships between skin temperatures and 2m air temperatures in the Arctic. The Cryosphere Discussions.

46. Oke T.R. (1973). City size and the urban heat island. Atmos. Env. Vol. 7. P. 769-779.

47. Peng S., Piao S., Ciais P., Friedlingstein P., Ottle C., Bréon F.-M., Nan H., Zhou L., Myneni R.B. (2012). Surface Urban Heat Island Across 419 Global Big Cities. Env. Sci. Technol. Vol. 46. P. 796703.

48. Schwarz N., Lautenbach S., Seppelt R. (2011). Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Env. Vol. 115. P. 3175-3186.

49. Shastri H., Barik B., Ghosh S., Venkataraman C., Sadavarte P. (2017). Flip flop of day-night and summer-winter surface urban heat island intensity in India. Scientific Reports. Vol. 7. ID. 40178

50. Shiklomanov N.I., Streletskiy D.A., Swales T.W., Kokorev V.A. (2016). Climate change and stability of urban infrastructure in Russian permafrost regions: prognostic assessment based on GCM climate projections. Geograph. Rev. P. 1-18.

51. Smoliak B.V., Snyder P.K., Twine T.E., Mykleby P.M., Hertel W.F. (2015). Dense Network Observations of the Twin Cities Canopy-Layer Urban Heat Island. J. Appl. Meteorol. Climatol. Vol. 54. P. 1899-1917.

52. Stewart I.D. (2011). A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. Vol. 31. P. 200-217.

53. Streletskiy D.A., Shiklomanov N., Grebenets V. (2012). Changes of foundation bearing capacity due to climate warming in northwest Siberia. Earth Cryosphere. Vol. 16. P. 22-32. (in Russian)

54. Sun C.-Y., Lin H.-T. (2005). Urban heat island intensity in subtropical Taiwan. Proc. World Sustainable Building Conf. Tokyo. 27-29 Sep. P. 2296-2301.

55. Tan M., Li X. (2015). The effects of settlement size on urban heat islands in fairly uniform geographic areas. Habitat Int. Vol. 49. P. 100-106.

56. Tomlinson C. J., Chapman L., Thornes J. E., Baker C. J. (2012). Derivation of Birmingham’s summer surface urban heat island from MODIS satellite images. Int. J. Climatol. Vol. 32. P. 214224.

57. Varentsov M.I., Konstantinov P.I., Samsonov T.E., Repina I.A. (2014). Investigation of the urban heat island phenomenon during polar night based on experimental measurements and remote sensing of Norilsk city. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. Vol. 11. P. 329-337 (in Russian).

58. Voogt J., Oke T. (2003). Thermal remote sensing of urban climates. Remote Sens. Environ. Vol. 86. P. 370-384.

59. Wang W., Liang S., Meyers T. (2008). Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sensing Env. Vol. 112. P. 623-635.

60. Yang Y., Cai W., Yang J. (2017). Evaluation of MODIS Land Surface Temperature Data to Estimate Near-Surface Air Temperature in Northeast China. Remote Sens. Vol. 9. P. 410.

61. Yuan F., Marvin E. B. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. Vol. 106. No. 3. P. 375-386.

62. Zilitinkevich S., Esau I. (2005). Resistance and Heat Transfer Laws for Stable and Neutral Planetary Boundary Layers: Old Theory, Advanced and Re-evaluated. Q. J. R. Meteorol. Soc. Vol. 131. P. 1863-1892.

63. Zhang H., Zhang F., Zhang G., He X., Tian L. (2016). Evaluation of cloud effects on air temperature estimation using MODIS LST based on ground measurements over the Tibetan Plateau. Atmos. Chem. Phys. Vol. 16. P. 13681-13696.

64. Zhang P., Imhoff M.L., Wolfe R.E., Bounoua L. (2010). Characterizing urban heat islands of global settlements using MODIS and nighttime lights products. Canadian J. Remote Sensing. Vol. 36. No. 3. P. 185-196.

65. Zhao L., Lee X., Smith R.B., Oleson K. (2014). Strong contributions of local background climate to urban heat islands. Nature, Vol. 511. P. 214-219.

66. Zhou L., Dickinson R.E., Tian Y., Fang J., Li Q., Kaufmann R.K., Tucker C.J., Myneni R.B. (2004). Evidence for a significant urbanization effect on climate in China. Proc. Nat. Acad. Sci. USA. Vol. 101. 9540-9544.

67. Zhou B., Rybski D., Kropp J.P. (2013). On the statistics of urban heat island intensity. Geophys. Res. Lett. Vol. 40. 5486-5491.

68. Zhou D., Zhao S., Zhang L., Sun G., Liu Y. (2015). The footprint of urban heat island effect in China. Sci. Reports. Vol. 5. P. 11160.


For citations:


Views: 1441

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)