Advanced search


Full Text:


The modern fluvial system on the lowland East European Plain is of depositional type. Sediment transport to the seas is only a few percent of the total erosion, and the main part of eroded material is accumulated in the channels. The recent deposition of suspended sediments is caused by accelerated soil erosion on the arable slopes, which led to a high rate of lateral sediment input and deposition at the river headwaters and on the floodplains. The process of accumulation is facilitated by the unfilled “negative” volume of the net of dry valleys formed during the Late Glacial catastrophic erosion event. Such events of catastrophic erosion of the sediments deposited in the lowland fluvial systems occur with a frequency of 100-120 thousand years. In the conditions of both scarce vegetation and extremal surface runoff, the entire fluvial systems become the area of intensive erosion, with the deep incision of gullies and of the river channels. Therefore, despite the modern intensive deposition, delivery ratio for the fluvial systems on this lowland territory is close to one in the long-term perspective.

About the Author

A. Yu. Sidorchuk
Lomonosov Moscow State University.
Russian Federation

Факультет географии.



1. Alayev E.B., Badenkov Yu. P., and Karavaeva N.A. (1990). The Russian Plain. In: B.L. Turner, W.C. Clark, R.W. Kates, J.F. Richards, J.T. Mathews and W.B. Meyer (Editors), The Earth as Transformed by Human Action. Cambridge University Press with Clark University, Cambridge, 543560 pp.

2. Arbogast A.F., Bookout J.R., Schrotenboer B.R., Lansdale A., Rust G.L. Bato V.A., (2008). Postglacial fluvial response and landform development in the Upper Muskegon River valley in north-central Lower Michigan. U.S.A. Geomorphology 102, 615-623.

3. Bahr A., Lamy F., Arz H., Kuhlmann H., and Wefer G. (2005). Late glacial to Holocene climate and sedimentation history in the NW Black Sea, Marine Geology, 214, pp. 309-322.

4. Dedkov A.P. and Mozzherin V.I. (1984). Erosion and sediment yield on the Earth. Kazan’ University Press, Kazan’ (in Russian).

5. Dokuchaev V.V. (1878). The ways of the river valleys formation at the European Russia. Sankt-Petersburg: Tipografija V. Dermakova (Publ.), 221 p. (in Russian).

6. Domanitskiy A.P., Dubrovina R.G., and Isayeva A.I. (1971). Rivers and lakes of the Soviet Union. Leningrad: Gidrometeoizdat (Publ.), 104 p. (in Russian).

7. Dury G.H. (1965). Theoretical implications of underfit streams. US Geological Survey Professional Paper 452-B. USGS, Washington.

8. Eremenko E.A. and Panin A.V. (2011). An origin of the net of hollows in the central and southern regions of the East European Plain. Vestnik Mosk. un-ta, Seriya geogr., No. 3, pp. 59–66 (in Russian).

9. Golosov V.N., Ivanova N.N., Litvin L.F., Sidorchuk A. Yu., Chernov A.V. (1991). Change in sedimentation in small river catchments in the European USSR. In: Snischenko, B.F. (Ed.), Sovremennoye sostoyaniye malykh rek SSSR i puti ikh ispol’zovaniya, sokhraneniya i vosstanovleniya. Gidrometeoizdat, Leningrad, pp. 96-103 (in Russian).

10. Gregory K.J. and Walling D.E. (1976). Drainage basin form and process: a geomorphological approach. Edward Arnold, London, 458 p.

11. Ito A. (2007). Simulated impacts of climate and land-cover change on soil erosion and implications for the carbon cycle, 1901 to 2100. Geophys Res Lett 34:L09403.

12. Knighton D. (1984). Fluvial Forms and Processes. London: Edward Arnold, 218 pp.

13. Langbein W.B., Leopold L.B. (1964). River channel bars and dunes. Theory of kinematic waves: USGS Professional Paper: 422- L.

14. Larsen A., Heckmann T., Larsen J.R., Bork H.-R. (2016). Gully catchments as a sediment sink, not just a source: Results from a long-term (~12,500 year) sediment budget. Earth Surface Processes and Landforms 41, (4), pp. 486-498.

15. Leigh D.S. (2006). Terminal Pleistocene braided to meandering transition in rivers of the southeastern USA. Catena 66, 155-160.

16. Leigh D.S. and Feeney T.P. (1995). Paleochannels indicating wet climate and lack of response to lower sea level, southeast Georgia. Geology, V. 23. Pp. 687–690.

17. Leonov Yu.G., Lavrushin Yu.A., Antipov M.P., Spiridonova Ye.A., Kuzmin Ya.V., Jull E.J.T., Burr S., Jelinowska A., and Chalie F. (2002). New age data on sediments of the transgressive phase of the early Khvalyn transgression of the Caspian Sea. Doklady Earth Sciences, v. 386, pp. 748–751.

18. Litvin L.F. (2002). Geography of soil erosion in agricultural lands in Russia. Akademkniga (Publ), Moscow (in Russian)

19. Litvin L.F., Zorina Ye.F., Sidorchuk A.Yu, Chernov A.V., Golosov V.N. (2003). Erosion and sedimentation on the Russian Plain, part 1: Contemporary processes. Hydrological Processes 17 (16), pp. 3335-3346.

20. Makkaveev N. I. (1955). The River Channel and Erosion in its Basin. Akademizdat: Moscow, 346 p. (in Russian)

21. Meade R.H. (1996). River – sediment inputs to major deltas. In: Milliman J.D., Haq B.U. (Eds.), Sea-Level Rise and Coastal Subsidence. Kluwer Academic Publishing, Dordrecht, pp. 63 – 85.

22. Milliman J.D. and Farnsworth K.L. (2011). River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press, Cambridge.

23. Page K.J., Kemp J., and Nanson G.C.(2009). Late Quaternary evolution of Riverine Plain paleochannels, southeastern Australia. Australian Journal of Earth Sciences 56, 19-33.

24. Panin A. V., Fuzeina J. N., Belyaev V. R. (2009). Long-term development of Holocene and Pleistocene gullies in the Protva river basin, central Russia. Geomorphology, v. 108, pp. 71– 91.

25. Resources of the Surface Waters in the USSR (1973). Don River Region. Gidrometeoizdat, Leningrad, V. 8 (in Russian).

26. Rzhanitsin N.A. (1985). Channel-Forming Processes in the Rivers. Gidrometeoizdat, Leningrad (in Russian).

27. Schumm S. A. (1977). The fluvial system. New York, John Wiley &Sons, 338 p.

28. Sidorchuk A. Yu. (1995). Erosion and accumulation on the Russian Plain and small river silting. In: Trudy Akademii vodokhozyaystvennykh nauk, vol. 1, Moscow, pp. 74-83 (in Russian).

29. Sidorchuk A. (2003). Floodplain sedimentation: Inherited memories. Global and Planetary Change, 39 (1-2), pp. 13-29.

30. Sidorchuk A. (2015). Sediment budget in the erosion-depositional systems. Geomorfologiya, 1, pp. 14-21 (in Russian).

31. Sidorchuk A., Borisova O., Panin A. (2001). Fluvial response to the Late Valdai/Holocene environmental change on the East European Plain. Glob. Planet. Change 28, pp. 303–318.

32. Sidorchuk A.Yu and Golosov V.N. (2003). Erosion and sedimentation on the Russian Plain, II: the history of erosion and sedimentation during the period of intensive agriculture. Hydrological Processes 17 (16), pp. 3347-3358.

33. Sidorchuk A. Yu., Panin A.V., Borisova O.K. (2008). Climate-induced changes in surface runoff on the North-Eurasian plains during the Late Glacial and Holocene. Water Resources 35 (4), pp. 386-396.

34. Starkel L. (1995). Palaeohydrology of the temperate zone. In: Gregory K.J., Starkel L., Baker V.R. (Eds.), Global Continental Palaeohydrology. Wiley, Chichester, pp. 233-258.

35. Wischmeier W. H. and Smith D. D. (1978). Predicting rainfall erosion losses. Agric. Handbook 537. Washington D.C.: U.S. Dept. Agric.

36. Vandenberghe J. (1995). Postglacial river activity and climate: state of the art and future perspectives. In: Frenzel B. (Ed.), European river activity and climatic change during the Lateglacial and early Holocene. G. Fischer Verlag, Stuttgart-Jena-NY. Paläoklimaforschung/ Palaeoclimate Research 14, pp. 1-9.

37. Vandenberghe J. (2003). Climate forcing of fluvial system development; an evolution of ideas. Quaternary Science Reviews, 22, pp. 2053–2060.

38. Van Oost K., Quine T. A., Govers G., De Gryze S., Six J., Harden J.W., Ritchie J. C., McCarty G.W., Heckrath G., Kosmas C., Giraldez J. V., da Silva J. R. M., and Merckx R.(2007). The impact of agricultural soil erosion on the global carbon cycle, Science, 318, 626–629.

39. Volkov I.A. (1963). Remnants of powerful flow in the valleys of southern part of the Western Siberia. Doklady AN SSSR 151 (3), 648-651 (in Russian).

40. Zamarin E.A. (1951). Open flow transport capacity. Stroyizdat, Moscow (in Russian).

For citation:


Views: 141

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)