History Versus Aspirations: Carbon Neutrality Postponed By Several Decades
https://doi.org/10.24057/2071-9388-2025-4059
Abstract
Here, we use modeling and literature assessments to quantify the prospects for achieving carbon neutrality by nine major developing economies (China, India, Indonesia, Brazil, Iran, Saudi Arabia, Turkey, Mexico, and South Africa). We examine the structure of energy consumption, electricity generation, and land use in these countries. Scenario estimates of the dynamics of carbon indicators of the world’s leading economies at global and subglobal scales based on a historical approach have been developed.
It is shown that the current rate of decarbonization and the development of the carbon capture and storage industry in the studied countries is not sufficient for these countries to fulfill their obligations to achieve carbon neutrality in 2050-2070 – this goal cannot be attained before the end of the century. The key challenge in achieving the carbon neutrality is the rapid, large-scale deployment of the carbon capture and storage technologies in all possible forms. Of the countries studied, however, only China and Brazil have their capabilities to store carbon for more than a century.
Although climate change occupies practically a leading place in the global agenda, the actual results of efforts in this area are far from the declared ones, and the climate warming can no longer be kept within 1.5°C. The core problem is to minimize the residence time for the global climate system in the dangerous zone (with a temperature overshoot above 1.5°C), which will require the emergence of the world economy with negative greenhouse gas emissions.
About the Authors
Vladimir V. KlimenkoRussian Federation
Krasnokazarmennaya St. 14, build. 1, Moscow, 111250;
Leninskiy prospekt 4, Moscow, 119049;
Nagornaya St. 31, build. 2, Moscow, 117186;
Staromonetniy lane 29, Moscow, 119017
Alexey G. Tereshin
Russian Federation
Krasnokazarmennaya St. 14, build. 1, Moscow, 111250;
Leninskiy prospekt 4, Moscow, 119049
Olga V. Mikushina
Russian Federation
Nagornaya St. 31, build. 2, Moscow, 117186
References
1. Cai B., Li Q., and Zhang X. (2021). China Status of CO2 Capture, Utilization and Storage (CCUS) 2021 — China’s CCUS pathways. Technical report CCUS-TR2021. Chinese Academy for Environmental Planning.
2. Daly K., and Gedminas T. (2022) The Path to 2075 — Slower Global Growth, But Convergence Remains Intact. New York: Goldman Sachs.
3. Das A., and Ghosh A. (2023). Vision Net Zero: A review of decarbonization strategies to minimize climate risks of developing countries. Environment, Development and Sustainability, 1-37, DOI. 10.1007/s10668-023-03318-6.
4. Debarre R., Gahlot P., Grillet C., and Plaisant M. (2021). Carbon Capture Utilization and Storage. Towards Net-Zero. FactBook. Kearney Energy Transition Institute.
5. Filippov S.P., and Zhdaneev O.V. (2022). Opportunities for the application of carbon dioxide capture and storage technologies in case of global economy decarbonization (review). Thermal Engineering, 69 (9), 637–652, DOI: 10.1134/s0040601522090014.
6. FAO (2020) Global Forest Resource Assessment 2020. Rome: FAO. DOI: 10.4060/ca9825en
7. Fragkos P., van Soest H. L., Schaeffer R., Reedman L., Köberle A. C., Macaluso N., Evangelopoulou S., De Vita A., Sha F., Qimin C., Kejun J., Mathur R., Shekhar S., Dewi R. G., Diego S. H., Oshiro K., Fujimori S., Park C., Safonov G., and Iyer G. (2021). Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States. Energy, 216, 119385, DOI: 10.1016/j.energy.2020.119385.
8. Gidden M.J., Riahi K., Smith S.J., Fujimori S., Luderer G., Kriegler E., van Vuuren D.P., van den Berg M., Feng L., Klein D., Calvin K., Doelman J.C., Frank S., Fricko O., Harmsen M., Hasegawa T., Havlik P., Hilaire J., Hoesly R., Horing J., Popp A., Stehfest E., and Takahashi K. (2019). Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 12 (4), 1443–1475, DOI: 10.5194/gmd-12-1443-2019.
9. Gonzalez-Abraham C., Olguín M., Rodriguez Ramirez S., McCord G., Torres Rojo J.M., Flores Martinez A., Cardenas Hernandez O.G., and Avila Ortega D. (2024) FABLE Scenathon 2023 Pathways for food and land-use systems in Mexico. Paris: Sustainable Development Solutions Network (SDSN). DOI: 10.5281/zenodo.11548702
10. Harris N.L., Gibbs D.A., Baccini A. et al. (2021) Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11, 234–240. https://doi.org/10.1038/s41558-020-00976-6.
11. Houghton R. A., and Castanho A. Annual emissions of carbon from land use, land-use change, and forestry from 1850 to 2020 (2023) Earth Syst. Sci. Data, 15, 2025–2054, DOI: 10.5194/essd-15-2025-2023,
12. Kearns et al., (2017) Developing a consistent database for regional geologic CO2 storage capacity worldwide. Energy Procedia. 114, 4697– 4709, DOI: 10.1016/j.egypro.2017.03.1603.
13. King D., Hill A., Corell R.W., Ye Q., Lackner K., Rockström J., Whitmarsh L., Abram N., Ghosh A., Anadon L.D., Rajamani L., Maslin M., Denton F., McGlade C., Luedemann G.A., and Mazzucato M. (2023). The Overshoot: Crossing the 1.5 Threshold and Finding Our Way Back. Cambridge, UK: Climate Crisis Advisory Group.
14. Klimenko V.V., Klimenko A. V., and Tereshin A. G. (2015) Test of Developing Long-Term Forecasts of World Energy Impact on the Earth’s Atmosphere. Izvestiya, Atmospheric and Oceanic Physics. 51 (2) 138-147. DOI: 10.1134/S0001433815020073
15. Klimenko V.V., Klimenko A.V , and Tereshin A.G. (2023a). Carbon-free Russia: Is There a Chance to Achieve Carbon Neutrality by 2060. Doklady Physics, 68 (7), 207–216, DOI: 10.1134/S1028335823070030.
16. Klimenko V.V., Klimenko A.V , Tereshin A.G., and Mikushina O.V. (2023b). Struggle for Climate Rescue: The Euphoria of Plans versus Cold Reality. Thermal Engineering, 70 (3),. 161–174, DOI: 10.1134/S0040601523030011.
17. Klimenko V.V., Klimenko A.V., and Tereshin A.G. (2024a) Towards Climate Neutrality: Will Russian Forest Stand Against Energy? Thermal Engineering. 71 (1), 3–17, DOI: 10.1134/S0040601524010051.
18. Klimenko V.V., Klimenko A.V., and Tereshin A.G. (2024b) Prospects for achieving carbon neutrality by economically developed countries. Doklady Rossijskoj akademii nauk. Fizika, tehničeskie nauki. 517 (1): 71-80. DOI: 10.31857/S2686740024040116. (in Russian)
19. Klimenko V.V., Klimenko A.V., Mikushina O.V., and Tereshin A.G. (2022b). Energy, Demography, and Climate: Is There an Alternative to Eliminating Fossil Fuels? Doklady Physics, 67 (10), 433–438, DOI: 10.1134/S102833582210007X.
20. Klimenko V.V., Klimenko A.V., Mikushina O.V., and Tereshin A.G. (2016b). To Avoid Global Warming by 2°C — Mission Impossible. Thermal Engineering, 63 (9), 605-610, DOI: 10.1134/S0040601516090020.
21. Klimenko V.V., Klimenko A.V., Tereshin A.G., and Mikushina O.V. (2024c). Zero carbon world: is it possible to achieve global climate neutrality? Thermal Engineering, 71 (12), 1025-1037, DOI: 10.1134/S0040601524700605.
22. Klimenko V.V., Mikushina O.V., and Tereshin A.G. (2016a). The 2015 Paris Agreement: A Turning Point in the World’s Energy History. Doklady Physics. 61 (6), 301-304, DOI:10.1134/S1028335816060070.
23. Klimenko V.V., Mikushina O.V., and Tereshin A.G. (2017). A combined model for analysis and projection of the regional air temperature dynamics. Proc. SPIE. 2017. 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 10466, DOI: 10.1117/12.2287753.
24. Klimenko V.V., Mikushina O.V., and Tereshin A.G. (2022a). Glasgow-2021: The Difficult Road to the 1.5оС Goal. Doklady Physics. 67 (7), 215–221, DOI: 10.1134/S1028335822070023.
25. Klimenko V.V., Mikushina O.V., and Tereshin A.G. (2020). Dynamics of Biotic Carbon Fluxes under Different Scenarios of Forest Area Changes. Izvestiya, Atmospheric and Oceanic Physics. 56 (4), 405–413, DOI: 10.1134/S0001433820040039.
26. Kök M.V. (2015). Carbon Capture and Storage: Current Perspectives, Re-use Activities, and Future Prospects in Turkey. Energy Sources. Part A - Recovery Utilization and Environmental Effects, 37 (18), 1979–1987, DOI: 10.1080/15567036.2015.1027835.
27. Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., and Zhou B. (eds.), (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, DOI: 10.1017/9781009157896.
28. Meinshausen M., Nicholls Z.R.J., Lewis J., Gidden M.J., Vogel E., Freund M., Beyerle U., Gessner C., Nauels A., Bauer N., Canadell J.G., Daniel J.S., John A., Krummel P.B., Luderer G., Meinshausen N., Montzka S.A., Rayner P.J., Reimann S., Smith S.J., van den Berg M., Velders G.J.M., Vollmer M.K., and Wang R.H.J. (2019).The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 3, 3571–3605, DOI: 10.5194/gmd-13-3571-2020.
29. Mo L., Zohner C.M., Reich P.B., Liang J., de Miguel S., et al. (2023) Integrated global assessment of the natural forest carbon potential. Nature. 624(7990) 92-101. DOI: 10.1038/s41586-023-06723-z.
30. Rao T.J., and Pandey K.K. (2023). Carbon Capture and Storage (CCS) for India: Bottlenecks and Their Role in Adoption. Wang X. (ed.) Future Energy. Energy Challenge, Opportunity, and Sustainability. Green Energy and Technology Series. Cham, Switzerland: Springer, 247–254, DOI: 10.1007/978-3-031-33906-6_22.
31. Schmidt G. (2024). Why 2023’s heat anomaly is worrying scientists. Nature, 627, 467, DOI: 10.1038/d41586-024-00816-z
32. Vourliotakis G., Human G., Behrens P., Sarantaridis D., Karellas S., and Platsakis O. (2024). Carbon Capture in South Africa. An overview on Carbon Capture and Storage or Utilisation in South Africa. Pretoria: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 8.
33. Yu Z., Liu S.., Li H., Liang J., Liu W., Piao S., Tian H., Zhou G., Lu C., You W., Sun P., Dong Y., Sitch S., and Agathokleous E. (2024) Maximizing carbon sequestration potential in Chinese forests through optimal management. Nature Communications. 15 (1), 3154–3166, DOI: 10.1038/s41467-024-47143-5.
Review
For citations:
Klimenko V.V., Tereshin A.G., Mikushina O.V. History Versus Aspirations: Carbon Neutrality Postponed By Several Decades. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. https://doi.org/10.24057/2071-9388-2025-4059