Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Winter Spatial Patterns in PM 2.5 Concentration and Air Quality Index in the Arctic Town

https://doi.org/10.24057/2071-9388-2025-3756

Abstract

The current study presents the results of air quality research in the small mining and touristic city of Apatity (Kola Peninsula, Russian Federation, 67o34’03’’N, 33o23’36’’E) during the two winter expeditions in 2022 and 2024. A PurpleAir PA-II portable device was used for ground-based aerosol observations. Two measurement campaigns allowed to conduct route measurements in various synoptic conditions, including both frosty windless weather, characterized by temperature inversion (2022), and contrasting conditions of “warm” winter unusual in the Arctic and Kola Peninsula (January 2024). The obtained results demonstrate that, depending on the synoptic situation in the city, there can be both traditional accumulation of concentrations of PM 2.5 particles (up to 300 µg/m3) dangerous for the health of inhabitants (in some areas exceeding the 20 min maximum allowable concentration of 160 µg/m3 almost twice), and significant improvement of air quality due to precipitation and air mixing under warm winter conditions (on average, about 17 µg/m3). The latter circumstance can noticeably improve the region’s tourism potential in a warmer climate.

About the Authors

Iuliia V. Mukhartova
Lomonosov Moscow State University, Faculty of Geography ; Lomonosov Moscow State University, Faculty of Physics
Russian Federation

Leninskie Gory 1, Moscow, 119991 



Alen A. Kospanov
Lomonosov Moscow State University, Faculty of Geography
Russian Federation

Leninskie Gory 1, Moscow, 119991 



Mariya E. Zubova
Lomonosov Moscow State University, Faculty of Geography
Russian Federation

Leninskie Gory 1, Moscow, 119991 



Anastasia A. Semenova
Lomonosov Moscow State University, Faculty of Geography
Russian Federation

Leninskie Gory 1, Moscow, 119991 



Uliana I. Antipina
Institute of Global Climate and Ecology named after Academician Yu.A. Israel
Russian Federation

Glebovskaya str. 20B, Moscow, 107258 



Igor V. Malyutin
Lomonosov Moscow State University, Faculty of Geography
Russian Federation

Leninskie Gory 1, Moscow, 119991 



Daria Yu. Gushchina
Lomonosov Moscow State University, Faculty of Geography
Russian Federation

Leninskie Gory 1, Moscow, 119991 



Marina V. Slukovskaya
Kola Science Center of the Russian Academy of Sciences
Russian Federation

Fersman str. 14, Apatity, 184209



Varvara S. Maratkanova
Lomonosov Moscow State University, Faculty of Geography
Russian Federation

Leninskie Gory 1, Moscow, 119991 



Pavel I. Konstantinov
Lomonosov Moscow State University, Faculty of Geography ; Shenzhen MSU-BIT University
Russian Federation

Leninskie Gory 1, Moscow, 119991 

Longgang District, Shenzhen, 518172, PR China 



References

1. Aloyan A.E. (2002). Dynamics and kinetics of gas impurities and aerosols in the atmosphere. Lections. M. IPM-RAS – 201p, ISBN 5-901854-05-5 (in Russian)

2. Arnold S. R., Law K. S. Brock C. A., et al. (2016). Arctic Air Pollution: Challenges and Opportunities for the next Decade. Elem. Sci. Anthr., 4, 000104, DOI: 10.12952/journal.elementa.000104

3. Bai N., Khazaei M., van Eeden S.F., Laher I. (2007). The pharmacology of particulate matter air pollution-induced cardiovascular dysfunction. Pharmacology & Therapeutics, 113(1), 16-29

4. Brozovsky J., Gaitani N., Gustavsen A. (2020). A systematic review of urban climate research in cold and polar climate regions. Renew. Sust. Energ. Rev., 110551, https://doi.org/10.1016/j.rser.2020.110551.

5. Burtsev I.I., Burtseva L.V. (1971). Comparison of characteristics of washout of hygroscopic and non-hygroscopic aerosol by cloud droplets. Proc. Institute of Experimental Meteorology, 21. (in Russian)

6. Chen D., Billmire M., Loughner C.P., Bredder A., French N.H.F., Kim H.C., Loboda T.V. (2023). Simulating spatio-temporal dynamics of surface PM2.5 emitted from Alaskan wildfires Science of the Total Environment, 898, art. no. 165594 DOI: 10.1016/j.scitotenv.2023.165594

7. Chubarova N.Ye., Zhdanova Ye.Yu., Androsova Ye.Ye., et al. (2020). The aerosol urban pollution and its effects on weather, regional climate and geochemical processes. Monograph, Max-Press, Moscow, ISBN 978-5-317-06464-8 (in Russian)

8. Di Q., Wang Y., Zanobetti A., Wang Y., Koutrakis P., Choirat C., Dominici F., Schwartz J.D. (2017). Air Pollution and Mortality in the Medicare Population. N Engl J Med., 376(26), 2513-2522, DOI: 10.1056/NEJMoa1702747.

9. Davy R. (2018). The climatology of the atmospheric boundary layer in contemporary global climate models. J. Clim., 31, 9151–9173, https://doi.org/10.1175/JCLI-D-17-0498.1

10. Dominici F., Peng R.D., Bell M.L., Pham L., McDermott A., Zeger S.L., Samet J.M. (2006). Fine particulate air pollution and hospital admissions for cardiovascular and respiratory diseases. JAMA, 295(10), 1127-1134, DOI: 10.1001/jama.295.10.1127

11. Gorbarenko E.V., Eremina I.D. (1998). The role of precipitation in the process of atmospheric aerosol purification. Optics of atmosphere and ocean, 11(5), 495-499 (in Russian)

12. Groot Zwaaftink C.D., Aas W., Eckhardt S., Evangeliou N., Hamer P., Johnsrud M., Kylling A., Platt S.M., Stebel K., Uggerud H., Yttri K.E. (2022). What caused a record high PM10 episode in northern Europe in October 2020? Atmospheric Chemistry and Physics, 22 (6), 3789 – 3810 DOI: 10.5194/acp-22-3789-2022

13. Järvi L., Grimmond C.S.B., McFadden J.P., Christen A., Strachan I.B., Taka M., et al. (2017). Warming effects on the urban hydrology in cold climate regions. Sci. Rep., 7, 1–8, https://doi.org/10.1038/s41598-017-05733-y.

14. Kholodov A.S., Kirichenko K.Yu., Zadornov K.S., Golokhvast K.S. (2019). The effect of atmospheric air suspended solids in populated areas on human health. Bulletin of the Kamchatka State Technical University, 49, 81-88, DOI: 10.17217/2079-0333-2019-49-81-88 (in Russian)

15. Konstantinov P.I., Varentsov M.I., Shartova N.V. (2022). North Eurasian thermal comfort indices dataset (NETCID): new gridded database for the biometeorological studies. Environmental Research Letters, 17(8), 085006. DOI: 10.1088/1748-9326/ac7fa9

16. Kotchenruther R. A. (2016). Source Apportionment of PM 2.5 at Multiple Northwest U.S. Sites: Assessing Regional Winter Wood Smoke Impacts from Residential Wood Combustion. Atmos. Environ., 142, 210– 219, DOI: 10.1016/j.atmosenv.2016.07.048

17. Kowalska M., Kocot K. (2016). Short-term exposure to ambient fine particulate matter (PM2.5 and PM10) and the risk of heart rhythm abnormalities and stroke. Postepy. Hig. Med. Dosw., [online], 70, 1017-1025, DOI: 10.5604/17322693.1220389 (in Polish)

18. Lappalainen H., Petäjä T., Vihma T., et al. (2022) Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) program perspective. Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022.

19. Pkhalagov O.A., Uzhegov V.N. (1980). Influence of heavy rainfall on optical properties of sea coastal haze. Izv. of the Academy of Sciences. USSR. Ser. FAO, 16(4), 345-351 (in Russian)

20. Plaude N.O., Stulov E.A., Parshutkina I.P., Pavlyukov Yu.B., Monakhova N.A. (2012). Influence of precipitation on aerosol concentration in the surface layer of the atmosphere. Meteorology and Hydrology, 5, 53-63 (in Russian)

21. Polichetti G., Cocco S., Spinali A., Trimarco V., Nunziata A. (2009). Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology, 261(1-2), 108, DOI: 10.1016/j.tox.2009.04.035

22. Prosviryakova I.A., Shevchuk L.M. (2018). Hygienic assessment of PM10 and PM2.5 particulate matter content in atmospheric air and health risk for residents in the zone of influence of emissions from stationary sources of industrial enterprises. Health risk analysis, №2, 14-22, DOI: 10.21668/health.risk/2018.2.02 (in Russian)

23. Sartz P.P., Hasan M.I., Aggarwal S. (2023). Air quality impacts in the vicinity of a chemical herder mediated in-situ burn for Arctic oil spill response. Science of the Total Environment, 892, art. no. 163860 DOI: 10.1016/j.scitotenv.2023.163860

24. Seinfeld J.H., Pandis S.N. (2006). Atmospheric Chemistry and Physics. From Air Pollution to Climate Change. Second edition. A WileyInterscience Publication, John Wiley & Sons, Inc., 1225 p.

25. Simpson W.R., Mao J.; Fochesatto G.J., et. al. (2024). Overview of the Alaskan Layered Pollution and Chemical Analysis (ALPACA) Field Experiment. ACS EST Air, 1(3), 200-222, https://doi.org/10.1021/acsestair.3c00076

26. Stavroulas I., Grivas G., Michalopoulos P., Liakakou E., Bougiatioti A., Kalkavouras P., Fameli K.M., Hatzianastassiou N., Mihalopoulos N., Gerasopoulos E. (2020). Field Evaluation of Low-Cost PM Sensors (Purple Air PA-II) Under Variable Urban Air Quality Conditions, in Greece. Atmosphere, 11(9), 926, https://doi.org/10.3390/atmos11090926

27. Strelyaeva A.B., Barakaeva N.S., Kalyuzhina E.A., Nikolenko D.A. (2014). Analysis of sources of atmospheric air pollution by fine dust. Internet-vestnik VolgGASU. Series: Polytechnic, 3(34), [online], URL: http://vestnik.vgasu.ru/?source=4&articleno=1715 (in Russian)

28. Strelyaeva A.B., Lavrentieva L.M., Lupinogin V.V., Gvozdikov I.A. (2017). Studies of dustiness in the residential area located near industrial enterprises by PM10 and PM2.5 particles. Engineering Bulletin of the Don, 45(2), 154-156 (in Russian)

29. Tanzer R., Malings C., Hauryliuk A., Subramanian R., Presto A.A. (2019). Demonstration of a Low-Cost Multi-Pollutant Network to Quantify Intra-Urban Spatial Variations in Air Pollutant Source Impacts and to Evaluate Environmental Justice. Int. J. Environ. Res. Public Health, 16, 2523, https://doi.org/10.3390/ijerph16142523

30. Tryner J., L’Orange C., Mehaffy J., Miller-Lionberg D., Hofstetter J. C., Wilson A., Volckens J. (2020). Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmospheric Environment, 220, 117067.

31. Varentsov M., Konstantinov P., Repina I., Artamonov A., Pechkin A, Soromotin A., Esau I., Baklanov A. (2023). Observations of the urban boundary layer in a cold climate city. Urban Climate, 47, 101351, Doi: 10.1016/j.uclim.2022.101351

32. Varentsov M.I., Repina I.A., Glasunov A.V., Samsonov T.E., Konstantinov P.I., Stepanenko V.M., Lykosov V.N., Artamonov A.Yu., Debolskiy A.V., Pechkin A.S., Soromotin A.V. (2022). Features of the atmospheric boundary layer of the city of Nadym according to experimental measurements and vortex-resolving modeling. Bulletin of the Moscow University. Seria 5: Geography, 6, 64-78 (in Russian)

33. Wallace J.M., Hobbs P.V. (2006). Atmospheric science: an introductory survey. Elsevier, Vol.92.

34. Wang Y., Hopke P. K. (2014). Is Alaska Truly the Great Escape from Air Pollution? – Long Term Source Apportionment of Fine Particulate Matter in Fairbanks, Alaska. Aerosol Air Qual. Res., 14 (7), 1875– 1882, DOI: 10.4209/aaqr.2014.03.0047

35. Ward T., Trost B., Conner J., Flanagan J., Jayanty R. K. M. (2012). Source Apportionment of PM2.5 in a Subarctic Airshed - Fairbanks, Alaska. Aerosol Air Qual. Res., 12, 536- 543, DOI: 10.4209/aaqr.2011.11.0208

36. Wetzel C., Brümmer B. (2011). An Arctic inversion climatology based on the European Centre reanalysis ERA-40. Meteorol., Z. 20, 589–600, https://doi.org/10.1127/0941-2948/2011/0295.

37. Yasunari T.J., Kajikawa T., Matsumi Y., Kim K.-M. (2024). Increased atmospheric PM2.5 events due to open waste burning in Qaanaaq, Greenland, summer of 2022 Atmospheric Science Letters, 25 (7), art. no. e1231 DOI: 10.1002/asl.1231

38. Zagorodnov S.Yu. (2018). Dust pollution of urban atmospheric air as an underestimated risk factor for human health. Bulletin of Perm National Research Polytechnic University. Applied ecology. Urbanistics., 2(30), 124-133 (in Russian)

39. Zagorodnov S.Yu., Mai I.V., Kokoulina A.A. (2019). Fine particles (PM2.5 and PM10) in the atmospheric air of a large industrial region: problems of monitoring and rationing in the composition of industrial emissions. Hygiene & Sanitation, 98(2), 142-147, DOI: http://dx.doi.org/10.18821/0016-9900-2019-98-2-142-147 (in Russian)


Review

For citations:


Mukhartova I., Kospanov A.A., Zubova M.E., Semenova A.A., Antipina U.I., Malyutin I.V., Gushchina D.Yu., Slukovskaya M.V., Maratkanova V.S., Konstantinov P.I. Winter Spatial Patterns in PM 2.5 Concentration and Air Quality Index in the Arctic Town. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(2):164-174. https://doi.org/10.24057/2071-9388-2025-3756

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)