Monitoring of Water Surface Dynamics of the Song Hinh Hydropower Reservior (Vietnam) Using Google Earth Engine
https://doi.org/10.24057/2071-9388-2025-3636
Abstract
Reservoirs are facing increasing hydrological pressure, making continuous and accurate monitoring of these resources essential for sustainable management. In this study, we utilized a method involving Google Earth Engine (GEE), a platform with strong data processing capabilities for big data, to analyze and interpret satellite images. The Otsu method was applied to automatically determine the threshold value for extracting the water surface of the Song Hinh reservoir using Landsat 5, 8, and 9 satellite imagery, and to assess changes in the reservoir’s surface area. The research results indicated that the water surface area of the Song Hinh reservoir initially increased 4.4 times (1999-2000) and then remained relatively stable (2000-2024). However, during the 2000-2015 period, the water surface area experienced minor expansions and contractions, while during the 2015-2024 period, the surface area expanded insignificantly, with less contraction than in the previous period. Additionally, the analysis results of water surface area changes were used to support the development of Earth Engine Apps, also known as WebGIS, as a tool for monitoring surface water changes in the Song Hinh reservoir. In summary, the results obtained in this study are highly useful as a foundation for developing effective monitoring measures and sustainable resource management for the Song Hinh reservoir area.
About the Authors
Quoc Khanh NguyenViet Nam
Hanoi, 100000
Mai Phuong Pham
Viet Nam
Hanoi, 100000
Trong Nhan Nguyen
Viet Nam
Ho Chi Minh, 70000
References
1. Alesheikh A.A., Ghorbanali A., and Nouri N. (2007). Coastline change detection using remote sensing. International Journal of Environmental Science and Technology, 4(1), 61–66, DOI: 10.1007/BF03325962.
2. Binh P.D. (2024). Comparison of multi-source satellite remote sensing observations for monitoring the variations of small lakes: a case study of Dai Lai Lake (Vietnam). Journal of Water and Climate Change, 15(1), 157, DOI: 10.2166/wcc.2023.505.
3. Bocchino F., Ravanelli R., Belloni V., Mazzucchelli P., and Crespi M. (2023). Water reservoirs monitoring through Google Earth Engine: Application to Sentinel and Landsat imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-1-2023, 41–47, DOI: 10.5194/isprs-archives-XLVIII-M-1-2023-41-2023.
4. Boothroyd R.J., Williams R.D., Hoey T.B., Barrett B., and Prasojo O.A. (2021). Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. WIREs Water, 8(1), e21496, DOI: 10.1002/wat2.1496.
5. Busker T., De Roo A., Gelati E., Schwatke C., Adamovic M., Bisselink B., Pekel J., and Cottam A. (2019). A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrology and Earth System Sciences, 23(2), 669–690, DOI: 10.5194/hess-23-669-2019.
6. Chen Q., Zhao L., Lu J., Kuang G., Wang N., and Jiang Y. (2012). Modified two-dimensional Otsu image segmentation algorithm and fast realization. IET Image Processing, 6(4), 426–433, DOI: 10.1049/iet-ipr.2010.0078.
7. Condeça J., Nascimento J., and Barreiras N. (2022). Monitoring the storage volume of water reservoirs using Google Earth Engine. Water Resources Research, 58(3), e2021WR030026, DOI: 10.1029/2021WR030026.
8. de Albuquerque Teixeira A.M., Batista L.V., da Silva R.M., Freitas L.M.T., and Santo C.A.G. (2024). Dynamic monitoring of surface area and water volume of reservoirs using satellite imagery, computer vision and deep learning. Remote Sensing Applications: Society and Environment, 35, 101205, DOI: 10.1016/j.rsase.2024.101205.
9. Deng Z. and Zhang G. (2021). An improved forest fire monitoring algorithm with three-dimensional Otsu. IEEE Access, 9, 118367– 118378, DOI: 10.1109/access.2021.3105382.
10. Duan Z. and Bastiaanssen W.G.M. (2013). Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment, 134, 403–416, DOI: 10.1016/j.rse.2013.03.010.
11. Fan J.L. and Lei B. (2012). A modified valley-emphasis method for automatic thresholding. Pattern Recognition Letters, 33(6), 703–708, DOI: 10.1016/j.patrec.2011.12.009.
12. Fuentes I., Padarian J., van Ogtrop F., and Vervoort R.W. (2019). Comparison of surface water volume estimation methodologies that couple surface reflectance data and digital terrain models. Water, 11(4), 780, DOI: 10.3390/w11040780.
13. Gupta M.R., Jacobson N.P., and Garcia E.K. (2007). OCR binarization and image pre-processing for searching historical documents. Pattern Recognition, 40(2), 389–397, DOI: 10.1016/j.patcog.2006.04.043.
14. Hai D., Can D., and Tri D. (2020). Research and development of a tool to forecast water flow to Song Hinh Lake for flood forecasting in the lower reaches of the Ba River. Vietnam Journal of Hydrometeorology, 70–77, DOI: 10.36335/vnjhm.2020(710).
15. Hamoudzadeh A., Ravanelli R., and Crespi M. (2023). GEDI data within Google Earth Engine: preliminary analysis of a resource for inland surface water monitoring. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-1-2023, 131–136.
16. Härer S., Bernhardt M., Siebers M., and Schulz K. (2018). On the need for a time-and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales. The Cryosphere, 12(5), 1629–1642, DOI: 10.5194/tc-12-1629-2018.
17. Huang D.Y. and Wang C.H. (2009). Optimal multi-level thresholding using a two-stage Otsu optimization approach. Pattern Recognition Letters, 30(3), 275–284.
18. Jagadeesha C.J. and Palnitkar V.G. (1991). Satellite data aids in monitoring reservoir water and irrigated agriculture. Water International, 6(1), 27–37, DOI: 10.1080/02508069108686096.
19. Jianzhuang L., Wenqing L., and Yupeng T. (1991, June). Automatic thresholding of gray-level pictures using two-dimension Otsu method. International Conference on Circuits and Systems. IEEE, 325–327, DOI: 10.1109/ciccas.1991.184351.
20. Kakooei M. and Baleghi Y. (2020). Shadow detection in very high resolution RGB images using a special thresholding on a new spectral– spatial index. Journal of Applied Remote Sensing, 14(1), 016503–016503, DOI: 10.1117/1.jrs.14.016503.
21. Kwong I.H.Y., Wong F.K.K., and Fung T. (2022). Automatic mapping and monitoring of marine water quality parameters in Hong Kong using Sentinel-2 image time-series and Google Earth Engine cloud computing. Frontiers in Marine Science, 9, 871470, DOI: 10.3389/fmars.2022.871470.
22. Le C.T. and Hoang D.T. (2024). Phytoplankton species in Song Hinh Hydropower Reservoir, Phu Yen Province, Vietnam. African Journal of Biological Sciences, 6(9), 2246–2264, DOI: 10.33472/afjbs.6.9.2024.2246-2264.
23. Liu D. and Yu J. (2009). Otsu method and K-means. Ninth International Conference on Hybrid Intelligent Systems. IEEE, 1, 344–349, DOI: 10.1109/his.2009.74.
24. Liu T., Zhang X.N., Li Z., and Chen Z.Q. (2014). Research on the homogeneity of asphalt pavement quality using X-ray computed tomography (CT) and fractal theory. Construction and Building Materials, 68, 587–598, DOI: 10.1016/j.conbuildmat.2014.06.046.
25. Lua L. and Sun H. (2023). Dynamic monitoring of surface water areas of nine plateau lakes in Yunnan Province using long time-series Landsat imagery based on the Google Earth Engine platform. Geocarto International, 38(1), 2253196, DOI: 10.1080/10106049.2023.2253196.
26. Ma Y., Li Q., Zhou Y., He F., and Xi S. (2017). A surface defects inspection method based on multidirectional gray-level fluctuation. International Journal of Advanced Robotic Systems, 14(3), 1729881417703114, DOI: 10.1177/1729881417703114.
27. Ng H.F., Kheng C.W., and Lin J.M. (2016). A weighting scheme for improving Otsu method for threshold selection. Journal of Computers, 27(2), 12–21.
28. Otsu N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, SMC-9(1), 62–66.
29. Pritam C. and Prasenjit A. (2010). Shoreline change and sea level rise along the coast of Bhitarkanika wildlife sanctuary, Orissa: An analytical approach of remote sensing and statistical techniques. International Journal of Geomatics and Geosciences, 1(3), 436–455.
30. Sha C., Hou J., and Cui H. (2016). A robust 2D Otsu’s thresholding method in image segmentation. Journal of Visual Communication and Image Representation, 41, 339–351, DOI: 10.1016/j.jvcir.2016.10.013.
31. Shelestov A., Lavreniuk M., Kussul N., Novikov A., and Skakun S. (2017). Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Frontiers in Earth Science, 5, 232994, DOI: 10.3389/feart.2017.00017.
32. Shen Y., Wang Y., Lv H., and Li H. (2015). Removal of thin clouds using cirrus and QA bands of Landsat-8. Photogrammetric Engineering & Remote Sensing, 81(9), 721–731, DOI: 10.14358/PERS.81.9.721.
33. Sherjah P.Y., Sajikumar N., and Nowshaja P.T. (2023). Quality monitoring of inland water bodies using Google Earth Engine. Journal of Hydroinformatics, 25(6), 432–450, DOI: 10.2166/hydro.2023.137.
34. Singh K.V., Setia R., Sahoo S., Prasad A., and Pateriya B. (2015). Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto International, 30(6), 650–661, DOI: 10.1080/10106049.2014.965757.
35. Tamiminia H., Salehi B., Mahdianpari M., Quackenbush L., Adeli S., and Brisco B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 152–170, DOI: 10.1016/j.isprsjprs.2020.04.001.
36. Tong X., Pan H., Xie H., Xu X., Li F., Chen L., Luo X., Liu S., Chen P., and Jin Y. (2016). Estimating water volume variations in Lake Victoria over the past 22 years using multi-mission altimetry and remotely sensed images. Remote Sensing of Environment, 187, 400–413, DOI: 10.1016/j.rse.2016.10.012.
37. Truong M.T.N. and Kim S. (2018). Automatic image thresholding using Otsu’s method and entropy weighting scheme for surface defect detection. Soft Computing, 22(2), 4197–4203, DOI: 10.1007/S00500-017-2709-1.
38. Valadão L.V., Cicerelli R.E., de Almeida T., Ma J.B.C., and Garnier J. (2021). Reservoir metrics estimated by remote sensors based on the Google Earth Engine platform. Remote Sensing Applications: Society and Environment, 24, 100652, DOI: 10.1016/j.rsase.2021.100652.
39. VanDeWeghe A., Lin V., Jayaram J., and Gronewold A.D. (2022). Changes in large lake water level dynamics in response to climate change. Frontiers in Water, 4, 805143, DOI: 10.3389/frwa.2022.805143.
40. Vasanthi A. and Joshitha K.L. (2024). Water Body Detection Utilizing NDWI, NDVI and NMDWI Indices in SEN-12 Spectral Imagery. First International Conference on Electronics, Communication and Signal Processing (ICECSP). IEEE, 1-5, DOI: 10.1109/icecsp61809.2024.10698263.
41. Vu Anh Minh, Dinh Nhat Quang, Nguyen Xuan Tinh, and Lars Ribbe. (2024). Spatio-temporal dynamics monitoring of surface water bodies in Nhat Le River Basin, Vietnam, by Google Earth Engine. Journal of Water and Climate Change, 15(3), 1262, DOI: 10.1080/10106049.2023.2253196.
42. Wang Q., Liu D., Yang H., Yin J., Bin Z., Zhu S., and Zhang Y. (2017). Comparative study on the water index of MNDWI and NDWI for water boundary extraction in eutrophic lakes. Advances in Geosciences, 7(6), 732–738, DOI: 10.12677/ag.2017.76074.
43. Wang R., Pan L., Niu W., Li R., Zhao X., Bian X., and Chen T. (2021). Monitoring the spatiotemporal dynamics of surface water body of the Xiaolangdi Reservoir using Landsat-5/7/8 imagery and Google Earth Engine. Open Geosciences, 13, 1290–1302, DOI: 10.1515/geo-2020-0305.
44. Xing W., Guo B., Sheng Y., Yang X., Ji M., and Xu Y. (2022). Tracing surface water change from 1990 to 2020 in China’s Shandong Province using Landsat series images. Ecological Indicators, 140, 108993, DOI: 10.1016/j.ecolind.2022.108993.
45. Xu R., Zhao S., and Ke Y. (2020). A simple phenology-based vegetation index for mapping invasive spartina alterniflora using Google Earth engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 190–201, DOI: 10.1109/jstars.2020.3038648.
46. Xu X., Xu S., Jin L., and Song E. (2011). Characteristic analysis of Otsu threshold and its applications. Pattern Recognition Letters, 32(7), 956–961, DOI: 10.1016/j.patrec.2011.01.021.
47. Yao F., Wang J., Wang C., and Crétaux J.F. (2019). Towards the continuous monitoring of the extreme events through satellite radar altimetry observations. Remote Sensing of Environment, 232, 111210, DOI: 10.1016/j.jhydrol.2021.126870.
48. Zhang J. and Hu J. (2008). Image segmentation based on 2D Otsu method with histogram analysis. International Conference on Computer Science and Software Engineering. IEEE, 6 , 105–108, DOI: 10.1109/CSSE.2008.206.
49. Zhang X. and Liu X. (2022). Comparative study on extraction of banded water and surface water in urban area based on MNDWI. 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS), Zhoushan, China. IEEE 33–40, DOI: 10.1109/ICGMRS55602.2022.9849259.
50. Zhang Y., Du J., Guo L., Fang S., Zhang J., Sun B., Mao J., Sheng Z., and Li L. (2022). Long-term detection and spatiotemporal variation analysis of open-surface water bodies in the Yellow River Basin from 1986 to 2020. Science of The Total Environment, 845, 157152, DOI: 10.1016/j.scitotenv.2022.157152.
Review
For citations:
Nguyen Q., Pham M., Nguyen T. Monitoring of Water Surface Dynamics of the Song Hinh Hydropower Reservior (Vietnam) Using Google Earth Engine. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(2):91-101. https://doi.org/10.24057/2071-9388-2025-3636