Spatio-Temporal Changes of Particulate Matter (Pm 2.5) Over Brazil and its Correlation With Meteorological Variables
https://doi.org/10.24057/2071-9388-2025-3600
Abstract
Fine particulate matter (PM2.5), classified as airborne, adversely affects human health and the environment. This study examined the concentration and variability of PM2.5 and its correlation with meteorological variables in Brazil. The annual average highest concentration of PM2.5 (kg-m-3) 5.65×10-9 was found in the western part of the country. A low concentration of PM 2.5 (kg-m-3), 0.21×10-9 was reported in North, East, and South Brazil. Mann-Kendall and Sen’s slope statistics were applied to find the trend and magnitude in the time series. Mann-Kendall (MAK)-Tau shows a positive significant trend (1 to 0.41) detected in the south, midwest, and southeastern Brazil. The Mann-Kendall (MAK)-Tau trend test was applied. The Sen’s Slope rate ranged from 6.98 to 4.54 in the midwest, south, and southeast regions of Brazil, respectively. In 24 years, an overall negative PM2.5 trend of -3.17 and -5.18 is shown in the north and northeast, respectively. This study evaluated PM2.5 correlation with prevailing meteorological variables using various statistical techniques computed in R-Studio. Cross-wavelet Transform (CWT) analysis was used to examine the time and magnitude of PM2.5 with prevailing meteorological variables. The CWT analysis is statistically significant. The application of CWT analysis has revealed high leading and lagging in-phase and anti-phase correlations with prevailing meteorological variables, e.g., relative humidity, precipitation, temperature, and wind speed variables that have influenced the temporal concentration of PM2.5.
About the Authors
Khadija ShakrullahPakistan
Lahore, 54000
Salman Tariq
Pakistan
Lahore, 54550
Safdar A. Shirazi
Pakistan
Lahore, 54590
Muhammad Nasar-u-Minallah
Pakistan
Lahore, 54590
Hafsa Shahzad
Pakistan
Lahore, 54590
Ayesha Mariam
Pakistan
Lahore, 54590
References
1. Agarwal S., Suchithra A. S., & Singh S. P. (2021). Analysis and interpretation of rainfall trend using Mann-Kendall’s and Sen’s slope Method. Indian Journal of Ecology, 48(2), 453–457.
2. Aguiar-Conraria L., Azevedo N., & Soares M. J. (2008). Using wavelets to decompose the time-frequency effects of monetary policy. Physica A: Statistical Mechanics and Its Applications, 387(12), 2863–2878. https://doi.org/10.1016/j.physa.2008.01.063
3. Amit S., Barua L., & Kafy A. Al. (2021). A perception-based study to explore COVID-19 pandemic stress and its factors in Bangladesh. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 15(4), 102129. https://doi.org/10.1016/j.dsx.2021.05.002
4. Amnuaylojaroen T., Inkom J., Janta R., & Surapipith V. (2020). Long range transport of southeast Asian PM2.5 pollution to northern Thailand during high biomass burning episodes. Sustainability (Switzerland), 12(23), 1–14. https://doi.org/10.3390/su122310049
5. Barik G., Acharya P., Maiti A., Gayen B.K., Bar S., & Sarkar A. (2020). A synergy of linear model and wavelet analysis towards spacetime characterization of aerosol optical depth (AOD) during pre-monsoon season (2007–2016) over the Indian sub-continent. Journal of Atmospheric and Solar-Terrestrial Physics, 211, 105478. https://doi.org/10.1016/j.jastp.2020.105478
6. Begum B.A., Biswas S. K., & Hopke P. K. (2008). Assessment of trends and present ambient concentrations of PM2.2 and PM10 in Dhaka, Bangladesh. Air Quality, Atmosphere and Health, 1(3), 125–133. https://doi.org/10.1007/s11869-008-0018-7
7. Braga C. F., Teixeira E. C., Meira L., Wiegand F., Yoneama M. L., & Dias J. F. (2005). Elemental composition of PM10 and PM2.5 in urban environment in South Brazil. Atmospheric Environment, 39(10), 1801–1815. https://doi.org/10.1016/j.atmosenv.2004.12.004
8. Butt E. W., Conibear L., Reddington C. L., Darbyshire E., Morgan W. T., Coe, H., Artaxo P., Brito J., Knote C., & Spracklen D. V. (2020). Large air quality and human health impacts due to Amazon forest and vegetation fires. Environmental Research Communications, 2(9). https://doi.org/10.1088/2515-7620/abb0db
9. Castelhano F. J., Pedroso A. C. N., Cobelo I., Borge R., Roig H. L., Adams M., Amini H., Koutrakis P., & Réquia W. J. (2022). The impact of longterm weather changes on air quality in Brazil. Atmospheric Environment, 283, 119182. https://doi.org/10.1016/j.atmosenv.2022.119182
10. Chen D., Xie X., Zhou Y., Lang J., Xu T., Yang N., Zhao Y., & Liu X. (2017). Performance evaluation of the WRF-chem model with different physical parameterization schemes during an extremely high PM2.5 pollution episode in Beijing. Aerosol and Air Quality Research, 17(1), 262–277. https://doi.org/10.4209/aaqr.2015.10.0610
11. Chen L., Zhu J., Liao H., Yang Y., & Yue X. (2020). Meteorological influences on PM 2.5 and O 3 trends and associated health burden since China’s clean air actions. Science of the Total Environment, 744, 140837. https://doi.org/10.1016/j.scitotenv.2020.140837
12. Chen P., Zhang X.Y., Chen J., Wei N.Y., & Lin S.C. (2017). Tempo-spatial distribution of air pollution index in Nanning city. 115, 397–404. https://doi.org/10.2991/eesed-16.2017.54
13. Chen X., Yin L., Fan Y., Song L., Ji T., Liu Y., Tian J., & Zheng W. (2020). Temporal evolution characteristics of PM2.5 concentration based on continuous wavelet transform. Science of the Total Environment, 699, 134244. https://doi.org/10.1016/j.scitotenv.2019.134244
14. Cholianawati N., Sinatra T., Nugroho G. A., Permadi D. A., Indrawati A., Halimurrahman K. M., Romadhon M. S., Ma’ruf I. F., Yudhatama D., Madethen T. A. P., & Awaludin A. (2024a). Diurnal and Daily Variations of PM2.5 and its Multiple-Wavelet Coherence with Meteorological Variables in Indonesia. Aerosol and Air Quality Research, 24(3), 230158. https://doi.org/10.4209/AAQR.230158
15. Cholianawati N., Sinatra T., Nugroho G. A., Permadi D. A., Indrawati A., Halimurrahman K. M., Romadhon M. S., Ma’ruf I. F., Yudhatama D., Madethen T. A. P., & Awaludin A. (2024b). Diurnal and Daily Variations of PM2.5 and its Multiple-Wavelet Coherence with Meteorological Variables in Indonesia. Aerosol and Air Quality Research, 24(3), 1–18. https://doi.org/10.4209/aaqr.230158
16. Costa R. L., Macedo de Mello Baptista G., Gomes H. B., Daniel dos Santos Silva F., Lins da Rocha Júnior R., de Araújo Salvador M., & Herdies D. L. (2020). Analysis of climate extremes indices over northeast Brazil from 1961 to 2014. Weather and Climate Extremes, 28, 100254. https://doi.org/10.1016/j.wace.2020.100254
17. Da Silva P. E., Santos e Silva C. M., Spyrides M. H. C., & Andrade L. de M. B. (2019). Precipitation and air temperature extremes in the Amazon and northeast Brazil. International Journal of Climatology, 39(2), 579–595. https://doi.org/10.1002/joc.5829
18. Das M., Das A., Sarkar R., Mandal P., Saha S., & Ghosh S. (2021). Exploring short term spatio-temporal pattern of PM2.5 and PM10 and their relationship with meteorological parameters during COVID-19 in Delhi. Urban Climate, 39, 100944. https://doi.org/10.1016/j.uclim.2021.100944
19. De Fatima Andrade M., de Miranda R. M., Fornaro A., Kerr A., Oyama B., de Andre P. A., & Saldiva P. (2012). Vehicle emissions and PM 2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere and Health, 5(1), 79–88. https://doi.org/10.1007/s11869-010-0104-5
20. Dong L., Hua P., Gui D., & Zhang J. (2022). Extraction of multi-scale features enhances the deep learning-based daily PM2.5 forecasting in cities. Chemosphere, 308(P2), 136252. https://doi.org/10.1016/j.chemosphere.2022.136252
21. Fatima M., Butt I., Nasar-u-Minallah M., Atta A., Cheng G. (2023). Assessment of Air Pollution and Its Association with Population Health: Geo-Statistical Evidence from Pakistan. Geography, Environment, Sustainability, 16(2), 93-101. https://doi.org/10.24057/2071-9388-2022-155.
22. Faridi S., Niazi S., Yousefian F., Azimi F., Pasalari H., Momeniha F., Mokammel A., Gholampour, A., Hassanvand M. S., & Naddafi K. (2019). Spatial homogeneity and heterogeneity of ambient air pollutants in Tehran. Science of the Total Environment, 697(1547). https://doi.org/10.1016/j.scitotenv.2019.134123
23. Fattah M. A., Morshed S. R., Kafy A. Al, Rahaman Z. A., & Rahman M. T. (2023). Wavelet coherence analysis of PM2.5 variability in response to meteorological changes in South Asian cities. Atmospheric Pollution Research, 14(5), 101737. https://doi.org/10.1016/j.apr.2023.101737
24. Gioia S. M. C. L., Babinski M., Weiss D. J., & Kerr A. A. F. S. (2010). Insights into the dynamics and sources of atmospheric lead and particulate matter in São Paulo, Brazil, from high temporal resolution sampling. Atmospheric Research, 98(2–4), 478–485. https://doi.org/10.1016/j.atmosres.2010.08.016
25. Guttikunda S. K., Nishadh K. A., Gota S., Singh P., Chanda A., Jawahar P., & Asundi J. (2019). Air quality, emissions, and source contributions analysis for the Greater Bengaluru region of India. Atmospheric Pollution Research, 10(3), 941–953. https://doi.org/10.1016/j.apr.2019.01.002
26. Han J., Wang J., Zhao Y., Wang Q., Zhang B., Li, H., & Zhai J. (2018). Spatio-temporal variation of potential evapotranspiration and climatic drivers in the Jing-Jin-Ji region, North China. Agricultural and Forest Meteorology, 256, 75–83. https://doi.org/10.1016/j.agrformet.2018.03.002
27. Huang G., Li, X., Zhang B., & Ren J. (2021). PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition. Science of the Total Environment, 768, 144516. https://doi.org/10.1016/j.scitotenv.2020.144516
28. Jang Y. W., & Jung G. W. (2023). Temporal Characteristics and Sources of PM2.5 in Porto Velho of Amazon Region in Brazil from 2020 to 2022. Sustainability (Switzerland), 15(18). https://doi.org/10.3390/su151814012
29. Leão M. L. P., Zhang L., & da Silva Júnior F. M. R. (2023). Effect of particulate matter (PM2.5 and PM10) on health indicators: climate change scenarios in a Brazilian metropolis. Environmental Geochemistry and Health, 45(5), 2229–2240. https://doi.org/10.1007/s10653-022-01331-8
30. Liu Y., Paciorek C. J., & Koutrakis P. (2009). Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environmental Health Perspectives, 117(6), 886–892. https://doi.org/10.1289/ehp.0800123
31. Marengo J. A., Torres R. R., & Alves L. M. (2017). Drought in Northeast Brazil—past, present, and future. Theoretical and Applied Climatology, 129(3–4), 1189–1200. https://doi.org/10.1007/s00704-016-1840-8
32. Meng Y., & Sun W. (2021). Relationship between the formation of pm2. 5 and meteorological factors in northern China: the periodic characteristics of wavelet analysis. Advances in Meteorology, 2021(1), 9723676. https://doi.org/10.1155/2021/9723676
33. Nasar-u-Minallah M., Zainab M., Jabbar M. (2024a). Exploring Mitigation Strategies for Smog Crisis in Lahore: A Review for Environmental Health, and Policy Implications. Environmental Monitoring and Assessment. 196, 1269. https://doi.org/10.1007/s10661-024-13336-0
34. Nasar-u-Minallah M., Jabbar M., and Parveen N. (2024b). Assessing and Anticipating Environmental Challenges in Lahore, Pakistan: Future Implications of Air Pollution on Sustainable Development and Environmental Governance. Environmental Monitoring and Assessment, 196, 865. https://doi.org/10.1007/s10661-024-12925-3
35. Nasar-u-Minallah M., Parveen N., Bushra and Jabbar M. (2024c). Assessing air quality dynamics in Punjab, Pakistan: Pre, during, and post COVID-19 lockdown and evaluating strategies for mitigating. GeoJournal, 89,125. https://doi.org/10.1007/s10708-024-11132-4
36. Nasar-u-Minallah, M., Jabeen, M., Parveen, N., Abdullah, M., Nuskiya, M.H.F. (2025). Exploring the seasonal variability and nexus between urban air pollution and urban heat islands in Lahore, Pakistan. Acta Geophys. (2025). https://doi.org/10.1007/s11600-025-01574-w.
37. Nguyen M. V., Park G. H., & Lee B. K. (2017). Correlation analysis of size-resolved airborne particulate matter with classified meteorological conditions. Meteorology and Atmospheric Physics, 129(1), 35–46. https://doi.org/10.1007/s00703-016-0456-y
38. Ocak S., & Sezer Turalioglu F. (2008). Effect of Meteorology on the Atmospheric Concentrations of Traffic-Related Pollutants in Erzurum, Turkey #. J. Int. Environmental Application & Science, 3(5), 325–335. Pacheco M. T., Parmigiani M. M. M., de Fatima Andrade M., Morawska L., &
39. Kumar P. (2017). A review of emissions and concentrations of particulate matter in the three major metropolitan areas of Brazil. Journal of Transport and Health, 4, 53–72. https://doi.org/10.1016/j.jth.2017.01.008
40. Ray S., Das S. S., Mishra P., & Al-Khatib A. M. G. (2021). Time Series SARIMA Modelling and Forecasting of Monthly Rainfall and Temperature in the South Asian Countries. Earth Systems and Environment, 5(3), 531–546. https://doi.org/10.1007/s41748-021-00205-w
41. Requia W. J., & Azevedo de Melo H. F. (2024). Effectiveness of public policies related to traffic emissions in improving air quality in Brazil: A causal inference study using Bayesian structural time-series models. Atmospheric Environment, 319, 120291. https://doi.org/10.1016/j.atmosenv.2023.120291
42. Saha D., Soni, K., Mohanan M. N., & Singh M. (2019). Long-term trend of ventilation coefficient over Delhi and its potential impacts on air quality. Remote Sensing Applications: Society and Environment, 15, 100234. https://doi.org/10.1016/j.rsase.2019.05.003
43. Saraswati G. M. P., Sharma,S. K., Mandal, T. K., & Kotnala R. K. (2019). Simultaneous Measurements of Ambient NH 3 and Its Relationship with Other Trace Gases, PM 2.5 and Meteorological Parameters over Delhi, India. Mapan - Journal of Metrology Society of India, 34(1), 55–69. https://doi.org/10.1007/s12647-018-0286-0
44. Sharma A., Mandal T. K., Sharma S. K., Shukla D. K., & Singh S. (2017). Relationships of surface ozone with its precursors, particulate matter and meteorology over Delhi. Journal of Atmospheric Chemistry, 74(4), 451–474. https://doi.org/10.1007/s10874-016-9351-7
45. Sharma P., Peshin S. K., Soni V. K., Singh S., Beig G., & Ghosh C. (2022). Seasonal dynamics of particulate matter pollution and its dispersion in the city of Delhi, India. Meteorology and Atmospheric Physics, 134(2), 1–18. https://doi.org/10.1007/s00703-021-00852-8
46. Shen Y., Zhang L., Fang X., Ji H., Li X., & Zhao Z. (2019). Science of the Total Environment Spatiotemporal patterns of recent PM 2 . 5 concentrations over typical urban agglomerations in China. Science of the Total Environment, 655, 13–26. https://doi.org/10.1016/j.scitotenv.2018.11.105
47. Singh B. P., Singh D., Kumar K., & Jain V. K. (2021). Study of seasonal variation of PM2.5 concentration associated with meteorological parameters at residential sites in Delhi, India. Journal of Atmospheric Chemistry, 78(3), 161–176. https://doi.org/10.1007/s10874-021-09419-8
48. Souza D. Z., Vasconcellos P. C., Lee H., Aurela M., Saarnio K., Teinilä K., & Hillamo R. (2014). Composition of PM2.5 and PM10 collected at Urban Sites in Brazil. Aerosol and Air Quality Research, 14(1), 168–176. https://doi.org/10.4209/aaqr.2013.03.0071
49. Squizzato R., Nogueira T., Martins L. D., Martins J. A., Astolfo R., Machado C. B., Andrade M. de F., & Freitas E. D. de. (2021). Beyond megacities: tracking air pollution from urban areas and biomass burning in Brazil. Npj Climate and Atmospheric Science, 4(1), 1–7. https://doi.org/10.1038/s41612-021-00173-y
50. Tai A. P. K., Mickley L. J., & Jacob D. J. (2010). Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment, 44(32), 3976–3984. https://doi.org/10.1016/j.atmosenv.2010.06.060
51. Tai A. P. K., Mickley L. J., & Jacob D. J. (2012). Impact of 2000-2050 climate change on fine particulate matter (PM 2.5) air quality inferred from a multi-model analysis of meteorological modes. Atmospheric Chemistry and Physics, 12(23), 11329–11337. https://doi.org/10.5194/acp-12-11329-2012
52. Urrutia-Pereira M., Rizzo L. V., Chong-Neto H. J., & Solé D. (2021). Impact of exposure to smoke from biomass burning in the Amazon rain forest on human health. Jornal Brasileiro de Pneumologia, 47(5), 1–8. https://doi.org/10.36416/1806-3756/e20210219
53. Vaishali V., G., & Das R. M. (2023). Influence of Temperature and Relative Humidity on PM2.5 Concentration over Delhi. Mapan - Journal of Metrology Society of India, 38(3), 759–769. https://doi.org/10.1007/s12647-023-00656-8
54. Wang J., Han J., Li T., Wu T., & Fang C. (2023). Impact analysis of meteorological variables on PM2.5 pollution in the most polluted cities in China. Heliyon, 9(7), e17609. https://doi.org/10.1016/j.heliyon.2023.e17609
55. Wang J., & Ogawa S. (2015). Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. International Journal of Environmental Research and Public Health, 12(8), 9089–9101. https://doi.org/10.3390/ijerph120809089
56. Wang J., Wang R., & Li Z. (2022). A combined forecasting system based on multi-objective optimization and feature extraction strategy for hourly PM2.5 concentration. Applied Soft Computing, 114, 108034. https://doi.org/10.1016/j.asoc.2021.108034
57. Westervelt D. M., Horowitz L. W., Naik V., Tai, A. P. K., Fiore A. M., & Mauzerall D. L. (2016). Quantifying PM2.5-meteorology sensitivities in a global climate model. Atmospheric Environment, 142, 43–56. https://doi.org/10.1016/j.atmosenv.2016.07.040
58. Wu S., Yan X., Yao J., & Zhao W. (2023). Quantifying the scale-dependent relationships of PM2. 5 and O3 on meteorological factors and their influencing factors in the Beijing-Tianjin-Hebei region and surrounding areas. Environmental Pollution, 337, 122517. https://doi.org/10.1016/j.envpol.2023.122517
59. Yang Q., Yuan Q., Li T., Shen H., & Zhang L. (2017). The relationships between PM2.5 and meteorological factors in China: Seasonal and regional variations. International Journal of Environmental Research and Public Health, 14(12). https://doi.org/10.3390/ijerph14121510
60. Ye T., Xu R., Yue X., Chen G., Yu P., Coêlho M. S. Z. S., Saldiva P. H. N., Abramson M. J., Guo Y., & Li S. (2022). Short-term exposure to wildfire-related PM2.5 increases mortality risks and burdens in Brazil. Nature Communications, 13(1), 1–9. https://doi.org/10.1038/s41467-022-35326-x
61. Zhang B., Jiao L., Xu G., Zhao S., Tang X., Zhou Y., & Gong C. (2018). Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5–10). Meteorology and Atmospheric Physics, 130(3), 383–392. https://doi.org/10.1007/s00703-017-0526-9
62. Zhang L., Cheng Y., Zhang Y., He Y., Gu Z., & Yu C. (2017). Impact of air humidity fluctuation on the rise of PM mass concentration based on the high-resolution monitoring data. Aerosol and Air Quality Research, 17(2), 543–552. https://doi.org/10.4209/aaqr.2016.07.0296
63. Zhao D., Xin J., Gong C., Quan J., Liu G., Zhao W., & Song T. (2019). The formation mechanism of air pollution episodes in Beijing city: Insights into the measured feedback between aerosol radiative forcing and the atmospheric boundary layer stability. Science of the Total Environment, 692, 371-381. https://doi.org/10.1016/j.scitotenv.2019.07.255
Review
For citations:
Shakrullah Kh., Tariq S., Shirazi S., Nasar-u-Minallah M., Shahzad H., Mariam A. Spatio-Temporal Changes of Particulate Matter (Pm 2.5) Over Brazil and its Correlation With Meteorological Variables. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(2):82-90. https://doi.org/10.24057/2071-9388-2025-3600