Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Scaling the Landscape: Revealing Land Use and Cover Change Patterns in the Colombian Andes

https://doi.org/10.24057/2071-9388-2025-3804

Abstract

Formulating hypotheses about the drivers of land use and cover change (LULCC) involves identifying patterns within the dynamics of the territory. Conventional basin-level analyses often mask localized patterns driven by social issues such as governance and community dynamics. This study examines the variations in LULCC patterns over 35 years (1985– 2019) by employing hierarchical intensity analysis of change across different spatial extents of the Grande and Chico River basins in the Colombian Andes. To better capture the influence of governance dynamics, the basin was delineated into two subzones with distinct governance characteristics: Zone A, where community-led conservation efforts and protected areas coexist, and Zone B, characterized by limited community participation and less active governance. Results reveal that the intensity of change accelerated significantly after 2010. During this period, forest and paramo ecosystems in the entire basin showed stationary losses, while pasture and non-vegetated areas exhibited systematic gains. Notably, Zone A demonstrated systematic pasture expansion. In contrast, pasture change in Zone B remained statistically dormant. Transition analysis indicated that cropland was the primary source of pasture gains. Qualitative insights from 3 semi-structured interviews corroborated that governance structures, local institutions, and the growing economic appeal of dairy farming are key drivers of LULCC, particularly in Zone A. These findings emphasize the need to integrate multi-scale quantitative assessments with local governance contexts to inform more effective land-use planning and conservation policy.

About the Authors

Luisa Díez-Echavarría
Instituto Tecnológico Metropolitano ; Decision Science Group, Universidad Nacional de Colombia
Colombia

Carrera 31 #54-10 Medellín, ZIP code:050012 

Medellín campus. Avenida 80 #65 - 223 Medellín, ZIP code: 050036



Clara Villegas-Palaciob
Decision Science Group, Universidad Nacional de Colombia
Colombia

Medellín campus. Avenida 80 #65 - 223 Medellín, ZIP code: 050036



Santiago Arango-Aramburo
Decision Science Group, Universidad Nacional de Colombia
Colombia

Medellín campus. Avenida 80 #65 - 223 Medellín, ZIP code: 050036



References

1. Aldwaik, S. Z., & Pontius, R. G. (2012). Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landscape and Urban Planning, 106(1), 103–114. https://doi.org/10.1016/j.landurbplan.2012.02.010

2. Aldwaik, S. Z., & Pontius, R. G. (2013). Map errors that could account for deviations from a uniform intensity of land change. International Journal of Geographical Information Science, 27(9), 1717–1739. https://doi.org/10.1080/13658816.2013.787618

3. Berbés-Blázquez, M., González, J. A., & Pascual, U. (2016). Towards an ecosystem services approach that addresses social power relations. Current Opinion in Environmental Sustainability, 19, 134–143. https://doi.org/10.1016/j.cosust.2016.02.003

4. Berrio-Giraldo, L., Villegas-Palacio, C., & Arango-Aramburo, S. (2021). Understating complex interactions in socio-ecological systems using system dynamics: A case in the tropical Andes. Journal of Environmental Management, 291, 112675. https://doi.org/10.1016/j.jenvman.2021.112675

5. Berrio-Giraldo, L., Villegas-Palacio, C., Arango-Aramburo, S., & Berrouet, L. (2024). Trajectories of socio-ecological systems: A case study in the tropical Andes. Ambio. https://doi.org/10.1007/s13280-024-02002-x

6. Binder, C. R., García-Santos, G., Andreoli, R., Diaz, J., Feola, G., Wittensoeldner, M., & Yang, J. (2016). Simulating Human and Environmental Exposure from Hand-Held Knapsack Pesticide Application: Be-WetSpa-Pest, an Integrative, Spatially Explicit Modeling Approach. Journal of Agricultural and Food Chemistry, 64(20), 3999–4008. https://doi.org/10.1021/acs.jafc.5b05304

7. Bodin, Ö., Crona, B., & Ernstson, H. (2006). Social networks in natural resource management: What is there to learn from a structural perspective? Ecology and Society, 11(2). https://doi.org/10.5751/ES-01808-1102r02

8. Corantioquia. (2010). Acuerdo 358. 36.

9. Corantioquia. (2020). Plan de acción 2020-2023. + sostenibilidad + vida.

10. Corantioquia, & Alcadía de Santa Rosa de Osos. (2015). Consolidación de iniciativas de conservación en el municipio de Santa Rosa de Osos - Antioquia.

11. Corantioquia, & Universidad Nacional de Colombia. (2015). Plan de Ordenación y Manejo de la Cuenca de los Ríos Grande y Chico.

12. De Koning, G. H. J., Veldkamp, A., & Fresco, L. O. (1998). Land use in Ecuador: a statistical analysis at different aggregation levels. Agriculture, Ecosystems and Environment, 70(2–3), 231–247. https://doi.org/10.1016/S0167-8809(98)00151-0

13. Ellis, E. A., Navarro Martínez, A., García Ortega, M., Hernández Gómez, I. U., & Chacón Castillo, D. (2020). Forest cover dynamics in the Selva Maya of Central and Southern Quintana Roo, Mexico: deforestation or degradation? Journal of Land Use Science, 15(1), 25–51. https://doi.org/10.1080/1747423X.2020.1732489

14. España, L. (2020). Trayectorias de cobertura vegetal y usos del suelo en la Cuenca de los Ríos Grande-Chico ¿Un problema de la política pública y gobernanza? Universidad Nacional de Colombia.

15. Farfán Gutiérrez, M., Rodríguez-Tapia, G., & Mas, J. F. (2016). Análisis jerárquico de la intensidad de cambio de cobertura/uso de suelo y deforestación (2000-2008) en la Reserva de la Biosfera Sierra de Manantlán, México. Investigaciones Geograficas, 2016(90), 89–104. https://doi.org/10.14350/rig.48600

16. Feng, Y., Lei, Z., Tong, X., Gao, C., Chen, S., Wang, J., & Wang, S. (2020). Spatially-explicit modeling and intensity analysis of China’s land use change 2000–2050. Journal of Environmental Management, 263(February). https://doi.org/10.1016/j.jenvman.2020.110407

17. Feola, G., & Binder, C. R. (2010). Towards an improved understanding of farmers’ behaviour: The integrative agent-centred (IAC) framework. Ecological Economics, 69(12), 2323–2333. https://doi.org/10.1016/j.ecolecon.2010.07.023

18. Gibson, C. C., Ostrom, E., & Ahn, T. K. (2000). The concept of scale and the human dimensions of global change: a survey. Ecological Economics, 32, 217–239.

19. Guarderas, P., Smith, F., & Dufrene, M. (2022). Land use and land cover change in a tropical mountain landscape of northern Ecuador: Altitudinal patterns and driving forces. PLOS ONE, 17(7), e0260191. https://doi.org/10.1371/journal.pone.0260191

20. Jantz, C. A., & Goetz, S. J. (2007). Analysis of scale dependencies in an urban land-use-change model. International Journal of Geographical Information Science, 19(2), 217–241. https://doi.org/10.1080/13658810410001713425

21. Jianchu, X., Fox, J., Vogler, J., Peifang, Z., Yongshou, F., Jie, Q., & Leisz, S. (2005). Land use and land cover changes and farmer vulnerability in Xishuangbanna prefecture in southwestern China. Envoronmental Management, 36(3), 404–413. https://doi.org/10.1007/s00267-003-0289-6

22. Kok, K., & Veldkamp, A. (2001). Evaluating impact of spatial scales on land use pattern analysis in Central America. Agriculture, Ecosystems and Environment, 85(1–3), 205–221. https://doi.org/10.1016/S0167-8809(01)00185-2

23. Kramer, D. B., Hartter, J., Boag, A. E., Jain, M., Stevens, K., Nicholas, K. A., McConnell, W. J., & Liu, J. (2017). Top 40 questions in coupled human and natural systems (CHANS) research. Ecology and Society, 22(2). https://doi.org/10.5751/ES-09429-220244

24. Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28(January 2003), 205–241. https://doi.org/10.1146/annurev.energy.28.050302.105459

25. Lambin, E., & Geist, H. (2008). Land-Use and Land-Cover: Local Processes and Global Impact. In Global Change – The IGBP Series. Spr. https://doi.org/10.1017/CBO9781107415324.004

26. Machado, J., Villegas-Palacio, C., Loaiza, J. C., & Castañeda, D. A. (2019). Soil natural capital vulnerability to environmental change. A regional scale approach for tropical soils in the Colombian Andes. Ecological Indicators, 96(65), 116–126. https://doi.org/10.1016/j.ecolind.2018.08.060

27. Manandhar, R., Odeh, I. O. A., & Pontius, R. G. (2010). Analysis of twenty years of categorical land transitions in the Lower Hunter of New South Wales, Australia. Agriculture, Ecosystems and Environment, 135(4), 336–346. https://doi.org/10.1016/j.agee.2009.10.016

28. Marsiglia Rivera, S. (2017). Capacidad adaptativa de los sistemas sociales ante la pérdida o deterioro de los servicios ecosistémicos. Universidad Nacional de Colombia.

29. Nunan, F. (2018). Navigating multi-level natural resource governance: an analytical guide. Natural Resources Forum, 42(3), 159–171. https://doi.org/10.1111/1477-8947.12149

30. Ostrom, E. (1990). Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge Univ. Press.

31. PNUD, & Corantioquia. (2020). Actualización del plan de manejo del Distrito de Manejo Integrado Sistema de Páramos y Bosques Altoandinos del noroccidente medio antioqueño (DMI SPBANMA).

32. Pontius, R. G. (2022). Metrics That Make a Difference.

33. Pontius, R. G., Shusas, E., & McEachern, M. (2004). Detecting important categorical land changes while accounting for persistence. Agriculture, Ecosystems and Environment, 101(2–3), 251–268. https://doi.org/10.1016/j.agee.2003.09.008

34. Rindfuss, R. R., Walsh, S. J., Ii, B. L. T., Fox, J., & Mishra, V. (2004). Developing a science of land change: Challenges and methodological

35. issues. PNAS, 101(39), 13976–13981. https://doi.org/10.1073/pnas.0401545101

36. Rodríguez Eraso, N., Armenteras-Pascual, D., & Alumbreros, J. R. (2013). Land use and land cover change in the Colombian Andes: dynamics and future scenarios. Journal of Land Use Science, 8(2), 154–174. https://doi.org/10.1080/1747423X.2011.650228

37. Ruiz Rivera, N., & Galicia, L. (2016). La escala geográfica como concepto integrador en la comprensión de problemas socio-ambientales. Investigaciones Geográficas, 89(89), 137–153. https://doi.org/10.14350/rig.47515

38. Sietz, D., Ordoñez, J. C., Kok, M. T. J., Janssen, P., Hilderink, H. B. M., Tittonell, P., & Van Dijk, H. (2017). Nested archetypes of vulnerability in African drylands: where lies potential for sustainable agricultural intensification? Environmental Research Letters, 12(9), 095006. https://doi.org/10.1088/1748-9326/aa768b

39. Turner, M. G., O’Neill, R. V., Gardner, R. H., & Milne, B. T. (1989). Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology, 3(3–4), 153–162. https://doi.org/10.1007/BF00131534

40. van Vliet, J., Magliocca, N. R., Büchner, B., Cook, E., Rey Benayas, J. M., Ellis, E. C., Heinimann, A., Keys, E., Lee, T. M., Liu, J., Mertz, O., Meyfroidt, P., Moritz, M., Poeplau, C., Robinson, B. E., Seppelt, R., Seto, K. C., & Verburg, P. H. (2016). Meta-studies in land use science: Current coverage and prospects. Ambio, 45(1), 15–28. https://doi.org/10.1007/s13280-015-0699-8

41. Velásquez Cartagena, R. (2020). Diseño de estrategias de conservación: aproximación crítica a la implementación del sistema local de áreas protegidas del municipio de Santa Rosa de Osos, Antioquia, a partir de la identificación de vacíos de conservación [Universidad de Antioquia]. https://bibliotecadigital.udea.edu.co/bitstream/10495/18554/5/VelasquezRobinson_2020_ConservacionVacioImplementacion.pdf

42. Verburg, P. H., Crossman, N., Ellis, E. C., Heinimann, A., Hostert, P., Mertz, O., Nagendra, H., Sikor, T., Erb, K. H., Golubiewski, N., Grau, R., Grove, M., Konaté, S., Meyfroidt, P., Parker, D. C., Chowdhury, R. R., Shibata, H., Thomson, A., & Zhen, L. (2015). Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene, 12, 29–41. https://doi.org/10.1016/j.ancene.2015.09.004

43. Verburg, P. H., Ellis, E. C., & Letourneau, A. (2011). A global assessment of market accessibility and market influence for global environmental change studies. Environmental Research Letters, 6(3), 034019. https://doi.org/10.1088/1748-9326/6/3/034019

44. Vincent, K. (2007). Uncertainty in adaptive capacity and the importance of scale. Global Environmental Change, 17(1), 12–24. https://doi.org/10.1016/j.gloenvcha.2006.11.009

45. Wassenaar, T., Gerber, P., Verburg, P. H., Rosales, M., Ibrahim, M., & Steinfeld, H. (2007). Projecting land use changes in the Neotropics: The geography of pasture expansion into forest. Global Environmental Change, 17(1), 86–104. https://doi.org/10.1016/j.gloenvcha.2006.03.007

46. Wu, J. (2004). Effects of changing scale on landscape pattern analysis: Scaling relations. Landscape Ecology, 19(2), 125–138. https://doi.org/10.1023/B:LAND.0000021711.40074.ae

47. Zimmerer, K. S., & Vaca, H. L. R. (2016). Fine-grain spatial patterning and dynamics of land use and agrobiodiversity amid global changes in the Bolivian Andes. Regional Environmental Change, 16(8), 2199–2214. https://doi.org/10.1007/s10113-015-0897-8


Review

For citations:


Díez-Echavarría L., Villegas-Palaciob C., Arango-Aramburo S. Scaling the Landscape: Revealing Land Use and Cover Change Patterns in the Colombian Andes. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(2):48-62. https://doi.org/10.24057/2071-9388-2025-3804

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)