Evaluation of new release Global Geopotential Model (GGMS) over East Malaysia
https://doi.org/10.24057/2071-9388-2024-3304
Abstract
Global Geopotential Model (GGM) is a mathematical representation of the Earth’s gravity field and geoid, which is developed to provide accurate information about the variations in the Earth’s gravitational potential across the entire globe. Recently numerous organizations and research centres have developed multi GGMs derived from several types of available gravity and height datasets to estimate orthometric heights from GNSS measurements. In this study, we present an accuracy evaluation and assessment of the nineteen recent and popular GGMS using actual GNSS/levelling points, and gravity anomaly points. The goal of this research is to find the optimum model for the study area which is located in the East Malaysia for further determination of geoid modelling in the regional scale. The selection of these areas basically is due to their renowned for uncontrolled topography and various datums. The results indicate that for geoid undulation, the XGM2019e_2159 with value of 0.195 model is the best fit GGM for the estimation model for East Malaysia. For gravity anomalies, the most reliable GGM for the study area is GO_CONS_GCF_2_DIR_R5 with RMSE of 32.456
About the Authors
Noorhurul A. OthmanMalaysia
Arau Campus, 02600 Arau, Perlis
Muhammad F. Pa’suya
Malaysia
Arau Campus, 02600 Arau, Perlis
Ami H. Md Din
Malaysia
81310 Johor Bahru, Johor
Mohamad A. Che Aziz
Malaysia
Arau Campus, 02600 Arau, Perlis
S. Hazelin Noor Azmin Nurul
Malaysia
Arau Campus, 02600 Arau, Perlis
A. Abd Samad Mohd
Malaysia
Arau Campus, 02600 Arau, Perlis
Mohd A. Abdullah
Malaysia
No. 306A, Jalan Sungai Korok, Alor Setar, 05400 Alor Setar, Kedah
References
1. Akyilmaz, O., Ustun, A., Aydin, C., Arslan, N., Doganalp, S., Guney, C., Mercan, H., Uygur, S.O., Uz, M., Yagci, O.; GRACE time-variable gravity field recovery using an improved energy balance approach; Geophysical Journal International, Vol 203, No. 3, p. 1773-1786, doi: 10.1093/gji/ggv392.
2. Alemu, E. (2021). Evaluation of GGMs Based on the Terrestrial Gravity Data of Gravity Disturbance and Moho Depthin Afar, Ethiopia. Artificial Satellites, 56(3), 78–100. https://doi.org/10.2478/arsa-2021-0007
3. Alemu, E. (2023). Global geopotential models evaluation based on terrestrial gravity data over Ethiopia. Journal of Applied Geodesy, 17(3), 217–236. https://doi.org/10.1515/jag-2022-0051
4. Alothman, A., Godah, W., & Elsaka, B. (2016). Gravity field anomalies from recent GOCE satellite-based geopotential models and Terrestrial Gravity Data: A comparative study over Saudi Arabia. Arabian Journal of Geosciences, 9(5). https://doi.org/10.1007/s12517-016-2393-y
5. Al Shouny, A., Khalil, R., Kamel, A., & Miky, Y. (2023). Assessments of recent global geopotential models based on GPS/levelling and gravity data along Coastal Zones of Egypt. Open Geosciences, 15(1). https://doi.org/10.1515/geo-2022-0450
6. Amos, M., and Featherstone, W. (2003). Comparisons of recent global geopotential models with terrestrial gravity field observations over New Zealand and Australia. Geomatics Research Australasia, 79, 1–20.
7. Barthelmes, F. & K. (2013). International Centre for Global Earth Models (ICGEM). Journal of Geodesy, The Geodesists Handbook, 1–10. Retrieved from http://icgem.gfz-potsdam.de/ICGEM/
8. Benahmed Daho, S. A. (2010). Assessment of the EGM2008 Gravity Field in Algeria Using Gravity and GPS/Levelling Data. In International Association of Geodesy Symposia (Vol. 135, pp. 459–466). https://doi.org/10.1007/978-3-642-10634-7_61
9. Brockman, JM, Zehentner N, Höck E, Pail R, Loth I, Mayer-Gürr T, Schuh WD (2014) EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission Geophys Res Lett 41:8089–8099, https://doi.org/10.1002/2014GL061904
10. Brockmann, J. M., Schubert, T., Schuh WD An Improved Model of the Earth’s Static Gravity Field Solely Derived from Reprocessed GOCE Data Surveys in Geophysics, doi: 10.1007/s10712-020-09626-0, 2021
11. Bruinsma, S. L., Förste, C., Abrikosov, O., Marty, J. C., Rio, M. H., Mulet, S., & Bonvalot, S. (2013). The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters, 40(14), 3607–3612. https://doi.org/10.1002/grl.50716
12. Chen, Q., Luo, Z., Qian, C., Zhu, M., & Zhang, X. (2022). A comparison of satellite-only, combined, and local geoid models: A case study in Australia. Journal of Applied Geodesy, 16(2), 89–101. https://doi.org/10.1515/jag-2021-0032.
13. Chen, Q., Shen, Y., Chen, W., Zhang, X., Hsu, H., 2016: An improved GRACE monthly gravity field solution by modelling the nonconservative acceleration and attitude observation errors. Journal of Geodesy, 90(6), 503-523. http://doi.org/10.1007/s00190-016-0889-6.
14. Chen, Q., Shen, Y., Francis , O., Chen, W., Zhang, X., Hsu, H., 2018:Tongji-Grace02s and Tongji-Grace02k: high-precision static GRACEonly global Earth’s gravity field models derived by refined data processing strategies. Journal of Geophysical Research: Solid Earth, doi: 10.1029/2018JB015641, 2018
15. Doganalp, S. (2016). An Evaluation of Recent Global Geopotential Models for Strip Area Project in Turkey. Earth Sciences Research Journal, 20(3), 1. https://doi.org/10.15446/esrj.v20n3.55440
16. El-Ashquer, M., Elsaka, B., & El-Fiky, G. (2016). On the Accuracy Assessment of the latest releases of Goce Satellite-based geopotential models with EGM2008 and terrestrial GPS/levelling and gravity data over Egypt. International Journal of Geosciences, 07(11), 1323–1344. https://doi.org/10.4236/ijg.2016.711097
17. Ellmann, A. (2010). Validation of the new earth gravitational model EGM08 over the Baltic countries. Gravity, Geoid and Earth Observation, 489–496. https://doi.org/10.1007/978-3-642-10634-7_65
18. Ellmann, A., & Vaníček, P. (2007). UNB application of stokes–Helmert’s approach to geoid computation. Journal of Geodynamics, 43(2), 200–213. https://doi.org/10.1016/j.jog.2006.09.019
19. Gatti, A., Reguzzoni, M., Migliaccio, F., Sanso, F.; Space-wise grids of gravity gradients from GOCE data at nominal satellite altitude; Paris, 2014.
20. Gatti, A., Reguzzoni M., Migliaccio, F., Sansò F., (2016) Computation and assessment of the fifth release of the GOCE-only space-wise solution: Presented at the 1st Joint Commission 2 and IGFS Meeting, 19-23 September 2016, Thessaloníki, Greece.
21. Gilardoni, M., Reguzzoni, M., Sampietro, D.; GECO: a global gravity model by locally combining GOCE data and EGM2008; Studia Geophysica et Geodaetica, Vol 60, p. 228-247, doi: 10.1007/s11200-015-1114-4, 2016
22. Goyal, R., Dikshit, O., & Balasubramania, N. (2019). Evaluation of global geopotential models: A case study for India. Survey Review, 51(368), 402–412. https://doi.org/10.1080/00396265.2018.1468537
23. Guimarães, G., Matos, A., & Blitzkow, D. (2012). An evaluation of recent GOCE geopotential models in Brazil. Journal of Geodetic Science, 2(2), 144–155. https://doi.org/10.2478/v10156-011-0033-8
24. Hirt, C., Gruber, T., & Featherstone, W. E. (2011). Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. Journal of Geodesy, 85(10), 723–740. https://doi.org/10.1007/s00190-011-0482-y
25. Heiskanen, W.A., Moritz, H. (1967). PhysicalGeodesy.W.H. Freeman, San Francisco Jamil, H., Kadir, M., Forsberg, R., Olesen, A., Isa, M. N., Rasidi, S., Mohamed, A., Chihat, Z., Nielsen, E., Majid, F., Talib, K., & Aman, S. (2017). Airborne geoid mapping of land and sea areas of East Malaysia. Journal of Geodetic Science, 7(1), 84–93. https://doi.org/10.1515/jogs-2017-0010
26. Kiamehr, R., and Sjöberg, L. E. (2005). Effect of the SRTM global DEM on the determination of a high-resolution geoid model: A case study in Iran. Journal of Geodesy, 79(9), 540–551. https://doi.org/10.1007/s00190-005-0006-8
27. Kiamehr, R., & Eshagh, M. (2008). EGMlab, a scientific software for determining the gravity and gradient components from global geopotential models. Earth Science Informatics, 1(2), 93–103. https://doi.org/10.1007/s12145-008-0013-4
28. Lee, J., & Kwon, J. H. (2020). Precision evaluation of recent global geopotential models based on GNSS/leveling data on unified control points. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 38(2), 153–163. https://doi.org/10.7848/ksgpc.2020.38.2.153
29. Liang W.; Li J.; Xu, X; Zhang, S.; Zhao, Y. 2020: A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE, GRACE, Satellite Altimetry, and EGM2008. Engineering, 860-878. doi: 10.1016/j.eng.2020.05.008.
30. Mainville, A., Forsberg, R., Sideris, M.G. (1992). Global positioning system testing of geoids computed from geopotential model and local gravity data: a case study.
31. Pail R, et al. (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843. https://doi.org/10.1007/s00190-011-0467-x
32. Perdana, A. D. P., & Heliani, L. S. (2017). Evaluation of global geopotential model and digital terrain model to the accuration of local geoid model: Case study in work field of PT Pertamina EP asset 4 field cepu. 2017 7th International Annual Engineering Seminar (InAES). https://doi.org/10.1109/inaes.2017.8068576
33. Rapp, R.H. (1997). Past and future developments in geopotential modelling, in : Forsberg, R, Feissl, M., Dietrich, R. (Eds.) Geodesy on the Move, Springer, Berlin, pp. 58-78
34. Rummel, R., Balmino, G., Johannessen, J., Visser, P., Woodworth, P. Dedicated gravity field missions-principles and aims, J Geodyn (2002) 33 3-20
35. Saari, T., & Bilker-Koivula, M. (2018). Applying the GOCE-based GGMs for the quasi-geoid modelling of Finland. Journal of Applied Geodesy, 12(1), 15–27. https://doi.org/10.1515/jag-2017-0020
36. Schwarz, K. P., Sideris, M. G., & Forsberg, R. (1990). The use of FFT techniques in physical geodesy. Geophysical Journal International, 100(3), 485–514. https://doi.org/10.1111/j.1365-246x.1990.tb00701.x
37. Sjöberg, L. E. (2003a). A computational scheme to model the geoid by the modified Stokes formula without gravity reductions. Journal of Geodesy, 77(7–8), 423–432. https://doi.org/10.1007/s00190-003-0338-1
38. Sjöberg, L. E. (2003b). A general model for modifying stokes? formula and its least-squares solution. Journal of Geodesy, 77(7–8), 459– 464. https://doi.org/10.1007/s00190-003-0346-1
39. Ssengendo, R. (2015). A height datum for Uganda based on a gravimetric quasigeoid model and Gnss/levelling (thesis). Architecture and the Built Environment, KTH Royal Institute of Technology, Stockholm.
40. Strykowski, G., & Forsberg, R. (2010). Testing EGM2008 on Leveling Data from Scandinavia, Adjacent Baltic Areas, and Greenland. In International Association of Geodesy Symposia (Vol. 135, pp. 505–509). https://doi.org/10.1007/978-3-642-10634-7_67
41. Tapley B, Chambers D, Bettadpur S, Ries J (2003) Large scale ocean circulation from the GRACE GGM01 geoid. Geophys Res Lett 30(22):2163. https://doi.org/10.1029/2003GL018622
42. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02 – An improved Earth gravity field model from GRACE. J Geod 79:467– 478. https://doi.org/10.1007/s00190-005-0480-z
43. Tocho, C. N., Antokoletz, E. D., Gómez, A. R., Guagni, H., & Piñon, D. A. (2022). Analysis of high-resolution global gravity field models for the estimation of International Height Reference System (IHRS) coordinates in Argentina. Journal of Geodetic Science, 12(1), 131–140. https://doi.org/10.1515/jogs-2022-0139
44. Wu, H., Müller, J., and Brieden, P. (2016) The IfE global gravity field model from GOCE-only observations: Presented at the International Symposium on Gravity, Geoid and Height Systems, 19-23 September 2016, Thessaloníki, Greece.
45. Xu X., Zhao Y., Reubelt T., Robert T. 2017 A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models Geodesy and Geodynamics, 8(4): 260-272, http://dx.doi.org/10.1016/j.geog.2017.03.013
46. Yi, Weiyong, Rummel, Reiner, Gruber, Thomas Gravity field contribution analysis of GOCE gravitational gradient components; Studia Geophysica et Geodaetica, Vol 57, No. 2, p. 174-202, doi: 10.1007/s11200-011-1178-8, 2013.
47. Yilmaz, M., Turgut, B., Gullu, M., & Yilmaz, I. (2016). Evaluation Of Recent Global Geopotential Models By Gnss/Levelling Data: Internal Aegean Region. International Journal of Engineering and Geosciences, 1(1), 15–19. https://doi.org/10.26833/ijeg.285221.
48. Zingerle P, Pail R, Gruber T, Oikonomidou X. The Experimental Gravity Field Model XGM2019e. GFZ Data Services; 2019. doi: 10.5880/ICGEM.2019.007.
49. Zingerle, P., Brockmann, J.M., Pail, R.; Gruber, T., Willberg, M. (2019): The polar extended gravity field model TIM_R6 doi: 10.5880/ICGEM.2019.005 2019.
Review
For citations:
Othman N.A., Pa’suya M.F., Md Din A., Che Aziz M., Nurul S., Mohd A., Abdullah M. Evaluation of new release Global Geopotential Model (GGMS) over East Malaysia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2024;17(4):235-246. https://doi.org/10.24057/2071-9388-2024-3304