Urban green infrastructure assessment: identification of public green spaces misuse
https://doi.org/10.24057/2071-9388-2024-3458
Abstract
Assessment of urban green infrastructure is a task of strategic planning and tactical implementation of decisions taken in the context of sustainable development of urban territories. One of the directions of such an assessment is to identify instances of land misuse within cities’ public green areas. It reflects the legal fairness of the use of urban green spaces, but currently has a weak scientific justification. Therefore, it is pertinent to develop a methodology for evaluating urban green infrastructure in order to pinpoint areas with inappropriate usage Critical analysis and synthesis allowed us to justify the assessment of the misuse of land within urban green zones as an equal element of the urban green infrastructure assessment system. A geospatial database was created to assess public green spaces. Using the results of remote sensing of territories, as well as the «boxplot» method in combination with the Python programming, the NDVI was calculated, and a classification of vegetation elements and artificial objects located within public green spaces in cities was carried out. Based on the obtained classification categories, a mechanism for identifying «green» areas with misuse of land was proposed, and a list of public green areas with similar violations in St. Petersburg was determined. The practical results of the study include: technology for assessing urban green infrastructure to identify public green spaces with misuse; geospatial databases of public green spaces for St. Petersburg; identified public green spaces with obvious violations of their use, including unauthorized parking, littering, sand dumps, unauthorized placement of industrial, warehouse, retail, transport, or other non-recreational facilities within the boundaries of PGS, vehicle collisions with «green» areas; erroneous inclusion of residential buildings and adjacent courtyards, non-residential facilities, as well as organized parking spaces within PGS’s boundaries.
Keywords
About the Author
Maria E. SkachkovaRussian Federation
2, 21st Line, St. Petersburg, 199106
References
1. Aram F. (2024). Resources of Urban Green Spaces and Sustainable Development. Resources, 13, 10. DOI: 10.3390/resources13010010.
2. Baltyzhakova T. and Romanchikov A. (2021). Spatial analysis of subway passenger traffic in Saint Petersburg. Geodesy and Cartography, 47(1), 10-20. DOI: 10.3846/gac.2021.11980.
3. Berdinskikh S. (2021). On Typical Violations of Legislation in the Field of Use and Protection of Specially Protected Natural Areas. Actual Problems of Russian Law, 16, 205-213. DOI: 10.17803/1994-1471.2021.126.5.205-213.
4. Bolkaner M.K. and Asilsoy B. (2023). Reinventing the Urban Neighborhood Green Index in the Context of Urban Ecology as a Conceptual Framework in NorthernNicosia, Cyprus. Sustainability, 15, 13880. DOI: 10.3390/su151813880.
5. Brindley P., W. Cameron R., Ersoy E., Jorgensen A., Maheswaran R. (2019). Is more always better? Exploring field survey and social media indicators of quality of urban green space, in relation to health. Urban For Urban Green, 39, 45-54. DOI: 10.1016/j.ufug.2019.01.015.
6. Browning M.H.E.M., Locke D.H., Konijnendijk C., Labib S.M., Rigolon A., Yeager R., Bardhan M., Berland A., Dadvand P., Helbich M., Li F., Li H., James P., Klompmaker J., Reuben A., Roman L.A., Tsai W.-L., Patwary M., O’Neil-Dunne J., Ossola A., Wang R., Yang B., Yi L., Zhang J., Nieuwenhuijsen M. (2024). Measuring the 3-30-300 rule to help cities meet nature access thresholds. Sci. Total Environ, 907, 167739. DOI: 10.1016/j.scitotenv.2023.167739.
7. Bykowa E., Banikevich T., Zalivatskaya N., Pirogova O. (2024). Modeling the Cadastral Value of Land Plots of Gardening and Horticultural Non-Profit Partnerships Taking into Account the Influence of Local Factors of the Territory. Land, 13(7), 1004. DOI: 10.3390/land13071004.
8. Cherepovitsyn A., Rutenko E., Solovyova V. (2021). Sustainable Development of Oil and Gas Resources: A System of Environmental, Socio-Economic, and Innovation Indicators. J. Mar. Sci. Eng, 9, 1307. DOI: 10.3390/jmse9111307.
9. Enssle F. and Kabisch N. (2020). Urban green spaces for the social interaction, health and well-being of older people - An integrated view of urban ecosystem services and socio-environmental justice. Environ Sci Policy, 109, 36-44. DOI: 10.1016/j.envsci.2020.04.008.
10. Gagarina E.S. (2023). Green infrastructure, and ecosystem services in sustainable urban development. AMIT, 1(62), 228-247. DOI: 10.24412/1998-4839-2023-1-228-247.
11. Giofandi E.A., Syahzaqi I., Sekarjati D., Putri A. M., Marta H., Sekarrini C. E. (2024). Assessment Of Remote Sensing Approach For Urban Ecological Quality Evaluation In Pekanbaru City, Riau Province Indonesia. Geography, Environment, Sustainability, 1(17), 28-35. DOI: 10.24057/2071-9388-2023-2640.
12. Giuliani G., Petri E., Interwies E., Vysna V., Guigoz Y., Ray N., Dickie I. (2021). Modelling Accessibility to Urban Green Areas Using Open Earth Observations Data: A Novel Approach to Support the Urban SDG in Four European Cities. Remote Sens, 13, 422. DOI: 10.3390/rs13030422.
13. Grunewald K., Richter B., Behnisch M. (2019). Multi-Indicator Approach for characterising urban green space provision at city and citydistrict level in Germany. Int. J. Environ. Res. Public Health, 16(13), 2300. DOI: 10.3390/ijerph16132300.
14. Ignjatović Đ. (2023). Green criminology and crime control. Crimen (Beograd), 14(1), 24-63. DOI: 10.5937/crimen2301024I.
15. Jang K.M., Kim J., Lee H.-Y., Cho H., Kim Y. (2020). Urban Green Accessibility Index: A Measure of Pedestrian-Centered Accessibility to Every Green Point in an Urban Area. ISPRS Int. J. Geo-Inf, 9, 586. DOI: 10.3390/ijgi9100586.
16. Jian M. and Yang J. (2024). Unveiling the adaptation strategies of woody plants in remnant forest patches to spatiotemporal urban expansion through leaf trait networks. Forest Ecosystems, 11, 100186. DOI: 10.1016/j.fecs.2024.100186.
17. Jin Y., Wang F., Zong Q., Jin K., Liu Ch., Qin P. (2024). Spatial patterns and driving forces of urban vegetation greenness in China: A case study comprising 289 cities. Geogr. Sustain, 5(3), 370-381. DOI: 10.1016/j.geosus.2024.03.001.
18. Kirschner V., Macků K., Moravec D., Maňas J. (2023). Measuring the relationships between various urban green spaces and local climate zones. Sci. Rep, 13, 9733. DOI: 10.1038/s41598-023-36850-6.
19. Klimanova O.A., Bukvareva E.N., Illarionova O.A., Kolbovsky E.Yu. (2022). Assessment of ecosystem services at the municipal level and its possible integration into territorial planning. Proceedings of the Russian Academy of Sciences. Geographical series, 86(4), 605-620. DOI: 10.31857/S2587556622040069.
20. Klimanova O., Illarionova O., Grunewald K., Bukvareva E. (2021). Green infrastructure, urbanization, and ecosystem services: The main challenges for Russia’s largest cities. Land, 10(12), 1292. DOI: 10.3390/land10121292.
21. Kolesnik O.A., Demidova P.M., Sannikova A.P. (2022). Creation of a geospatial database of particularly valuable productive agricultural land taking into account geodetic data in order to provide land monitoring. Vestnik of the Siberian State University of Geosystems and Technologies (SSUGT), 6, 39-48. DOI: 10.33764/2411-1759-2022-27-6-39-48.
22. Kopylova N.S., Grigoriev K.V., Slobodkin S.M., Romanchikov A.Yu, Pavlov N.S. (2023). Working at the concept of an interactive atlas “The history of the engineering geodesy department development”. Geodesy and Cartography, 84(5), 9-17. DOI: 10.22389/0016-7126-2023-995-5-9-17.
23. Kovyazin V.F., Kitcenko A.A., Shobairi S.O.R. (2021). Cadastral valuation of forest lands, taking into account the degree of development of their infrastructure. Journal of Mining Institute, 249, 449-462. DOI: 10.31897/PMI.2021.3.14.
24. Kovyazin V.F., Nguyen T.A., Nguyen T.T. (2023). Monitoring the forest fund lands of Kon Tum province, Vietnam using remote sensing data of Earth. Geodesy and cartography = Geodezia i Kartografia, 84(8), 57–64. (In Russ.) DOI: 10.22389/0016-7126-2023-998-8-57-64.
25. Kuklina V., Sizov O., Fedorov R. (2021). Green Spaces as an Indicator of Urban Sustainability in the Arctic Cities: Case of Nadym. Polar Sci, 29, 100672. DOI: 10.1016/j.polar.2021.100672.
26. Kumar A., Upreti M., Pandey A.C., Saikia P., Khan M.L. (2023). Contribution of Landscape Transformation in the Development of Heat Islands and Sinks in Urban and Peri-Urban Regions in the Chota–Nagpur Plateau, India. Resources, 12, 58. DOI: 10.3390/resources12050058.
27. Kurniawan H.B., Roychansyah M.S. (2023). The Social Equity Of Public Green Open Space Accessibility: The Case Of South Tangerang, Indonesia. Geography, Environment, Sustainability, 1(16), 45-54. DOI: 10.24057/2071-9388-2022-124.
28. Liotta C., Kervinio Y., Levrel H., Tardieu L. (2020). Planning for environmental justice - reducing well-being inequalities through urban greening. Environ Sci Policy, 112, 47-60. DOI: 10.1016/j.envsci.2020.03.017.
29. Luo J., Zhai S., Song G., He X., Song H., Chen J., Liu H., Feng Y. (2022). Assessing inequity in green space exposure toward a «15-minute city» in Zhengzhou, China: Using deep learning and urban big data. Int. J. Environ. Res. Public Health, 19(10), 5798. DOI: 10.3390/ijerph19105798.
30. Ma B., Zhou T., Lei S. et al. (2019). Effects of urban green spaces on residents’ well-being. Environ Dev Sustain, 21, 2793–2809. DOI: 10.1007/s10668-018-0161-8.
31. Mears M., Brindley P., Jorgensen A., Maheswaran R. (2020). Population-level linkages between urban greenspace and health inequality: The case for using multiple indicators of neighborhood greenspace. Health Place, 62, 102284. DOI: 10.1016/j.healthplace.2020.102284.
32. Mityakova I.I., Ivanova R.R., Shvedova T.E. (2023). Assessment of the ecological state of the urban environment in the «soil-plant» system of the city of Yoshkar-Ola. Bulletin of Udmurt University Series Biology Earth Sciences, 33(4), 403-412. DOI: 10.35634/2412-9518-2023-33-4-403-412.
33. Murtinová V., Gallay I., Olah B. (2022). Mitigating Effect of Urban Green Spaces on Surface Urban Heat Island during Summer Period on an Example of a Medium Size Town of Zvolen, Slovakia. Remote Sens, 14, 4492. DOI: 10.3390/rs14184492.
34. Nasehi S. and Namin A.I. (2020). Assessment of urban green space fragmentation using landscape metrics. Modeling Earth Systems and Environment, 6(1). DOI: 10.1007/s40808-020-00809-7.
35. Nazombe K. and Nambazo O. (2023). Monitoring and assessment of urban green space loss and fragmentation using remote sensing data in the four cities of Malawi from 1986 to 2021. Scientific African, 20, e01639. DOI: 10.1016/j.sciaf.2023.e01639.
36. Nesbitt L., J. Meitner M., Girling C., R.J. Sheppard S., Lu Yu. (2019). Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. Landsc Urban Plan. 181, 51-79. DOI: 10.1016/j.landurbplan.2018.08.007.
37. Noszczyk T. (2023). Detecting changes in green and blue spaces: Modeling based on statistical approach. Ecol. Indic, 154, 110878. DOI: 10.1016/j.ecolind.2023.110878.
38. Nowak D.J., Hirabayashi S., Doyle M., McGovern M., Pasher J. (2018). Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For Urban Green, 29, 40–48. DOI: 10.1016/j.ufug.2017.10.019.
39. Pan T., He S., Liu Z., Jiang L., Zhao Q., Hamdi R. (2023). Analyzing Changes in Urban Green Spaces and Their Effect on Land Temperature from the Perspective of Surface Radiation Energy Balance in Rizhao City, the Central Coast of China. Remote Sens, 15, 4785. DOI: 10.3390/rs15194785.
40. Pashkevich M.A., Beck K., Matveeva V.A., Alekseenko A.V. (2020). Biogeochemical assessment of soil and vegetation cover condition in industrial, residential and recreational zones of St. Petersburg. Journal of Mining Institute, 241, 125–130. DOI: 10.31897/PMI.2020.1.125.
41. Pashkevich M.A. and Danilov A.S. (2023). Ecological security and sustainability. Journal of Mining Institute, 260, 153-154.
42. Pouya S. and Aghlmand M. (2022). Evaluation of urban green space per capita with new remote sensing and geographic information system techniques and the importance of urban green space during the COVID-19 pandemic. Environ. Monit. Assess, 194, 633. DOI: 10.1007/s10661-022-10298-z.
43. Priya M.V. et al. (2023). Monitoring vegetation dynamics using multi-temporal Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) images of Tamil Nadu. Journal of Applied and Natural Science, 15(3), 1170-1177. DOI: 10.31018/jans.v15i3.4803.
44. Raguzin I.I., Bykova E.N., Lepikhina O.Yu. (2023). Polygonal Metric Grid Method for Estimating the Cadastral Value of Land Plots. Lomonosov Geography Journal, (3), 92-103. (In Russ.) DOI: 10.55959/MSU0579-9414.5.78.3.8.
45. Rakhmatullina I., Rakhmatullin Z., Zaitsev G., Davydychev A., Gilmanova G., Komissarov M. (2023). The Green Space Availability in Ufa City Metropolis. Forests, 14, 1297. DOI: 10.3390/f14071297.
46. R.C. McEachan R., C. Yang T., Roberts H., E. Pickett K., Arseneau-Powell D., J. Gidlow Ch., Wright J., Nieuwenhuijsen M. (2018). Availability, use of, and satisfaction with green space, and children’s mental wellbeing at age 4 years in a multicultural, deprived, urban area: results from the Born in Bradford cohort study. Lancet Planet. Health, 2(6), e244-e254. DOI: 10.1016/S2542-5196(18)30119-0.
47. Roodsari E.N. and Hoseini P. (2022). An assessment of the correlation between urban green space supply and socio-economic disparities of Tehran districts - Iran. Environ. Dev. Sustain, 24, 12867–12882. DOI: 10.1007/s10668-021-01970-4.
48. Rouse J.W, Haas R.H., Scheel J.A., Deering D.W. (1974). Monitoring Vegetation Systems in the Great Plains with ERTS. Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, 1, 48-62. Available at: https://ntrs.nasa.gov/citations/19740022614.
49. Schindler M., Le Texier M., Caruso G. (2022). How far do people travel to use urban green space? A comparison of three European cities. Appl Geogr, 141, 102673. DOI: 10.1016/j.apgeog.2022.102673.
50. Set of rules 476.1325800.2020. Territories of urban and rural settlements. Rules for planning, development and improvement of residential districts (2020). Ministry of construction and housing and communal services of the Russian Federation. Available at: https://docs.cntd.ru/document/565322506.
51. Shchasnaya I. and Rondak U. (2024). Green spaces system analysis and assessment of plantings’ ecological state in Minsk city applying geoinformation technologies. E3S Web of Conferences. II International Scientific and Practical Conference «Energy, Ecology and Technology in Agriculture» (EEA2023). 480, 02016. DOI: 10.1051/e3sconf/202448002016.
52. Shestakov A.K., Petrov P.A., Nikolaev M.Y. (2023). Automatic system for detecting visible emissions in a potroom of aluminum plant based on technical vision and a neural network. Metallurgist, 66, 1308 – 1319. DOI: 10.1007/s11015-023-01445-z.
53. Skachkova M. and Guryeva O. (2023). Monitoring of the State of Saint Petersburg Green Spaces by Remote Sensing Data. Ecol. Ind. Russ, 27(5), 51-57. (In Russ.) DOI: 10.18412/1816-0395-2023-5-51-57.
54. Slovic A.D., Kanai C., Marques Sales D., Carnavalli Rocha S., de Souza Andrade A.C., Martins L.S. et al. (2023). Spatial data collection and qualification methods for urban parks in Brazilian capitals: An innovative roadmap. PLoS ONE, 18(8), e0288515. DOI: 10.1371/journal.pone.0288515.
55. Solovyeva N., Shinkaruk V., Fantrov P., Kakhhorov D. (2020). Features of prosecutorial supervision over the implementation of legislation on specially protected natural territories in modern Russia. IOP Conference Series: Materials Science and Engineering, 828, 012025. DOI: 10.1088/1757-899X/828/1/012025.
56. Spiridonov A.A. (2023). Features of the Model of Control and Supervisory Activities in the Context of Public Administration Development Mechanisms in Russia: Constitutional Law Context. Lex russica, 76(1), 63-75. DOI: 10.17803/1729-5920.2023.194.1.063-075
57. Stessens P., Canters F., Huysmans M., Khan A.Z. (2020). Urban green space qualities: An integrated approach towards GIS-based assessment reflecting user perception. Land Use Policy, 91, 104319. DOI: 10.1016/j.landusepol.2019.104319.
58. Stessens P., Z. Khan A., Huysmans M., Canters F. (2017). Analysing urban green space accessibility and quality: A GIS-based model as spatial decision support for urban ecosystem services in Brussels. Ecosyst. Serv, 28(C), 328-340. DOI: 10.1016/j.ecoser.2017.10.016.
59. Tempa K., Ilunga M., Agarwal A., Tashi. (2024). Utilizing Sentinel-2 Satellite Imagery for LULC and NDVI Change Dynamics for Gelephu, Bhutan. Appl. Sci, 14, 1578. DOI: 10.3390/app14041578.
60. Vidal D.G., Dias R.C., Teixeiram C.P., Fernandes C.O., Filho W.L., Barros N., Maia R.L. (2022). Clustering public urban green spaces through ecosystem services potential: A typology proposal for place-based interventions. Environ Sci Policy, 132, 262–272. DOI: 10.1016/j.envsci.2022.03.002.
61. Volokhov E.M. and Mukminova D.Z. (2021). Deformations assessment during subway escalator tunnels construction by the method of artificial freezing of soil for the stage of ice wall formation. Journal of Mining Institute, 252, 826-839. DOI: 10.31897/PMI.2021.6.5.
62. Wang R., Feng Z., Pearce J., Yao Y., Li X., Liu Y. (2021). The distribution of greenspace quantity and quality and their association with neighborhood socioeconomic conditions in Guangzhou, China: A new approach using deep learning method and street view images. Sustain. Cities Soc, 66, 2210-6707. DOI: 10.1016/j.scs.2020.102664.
63. Wu L., Kim S.K., Lin C. (2022). Socioeconomic groups and their green spaces availability in urban areas of China: A distributional justice perspective. Environ Sci Policy, 131, 26–35. DOI: 10.1016/j.envsci.2022.01.008.
64. Wu Sh., Yu W., An J., Lin Ch., Chen B. (2023). Remote sensing of urban greenspace exposure and equality: Scaling effects from greenspace and population mapping. Urban For Urban Green, 90, 128136. DOI: 10.1016/j.ufug.2023.128136.
Review
For citations:
Skachkova M.E. Urban green infrastructure assessment: identification of public green spaces misuse. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2024;17(4):183-197. https://doi.org/10.24057/2071-9388-2024-3458