Levels, D,S-patterns and source identification of metals and metalloids in river waters of the gas-producing region in the north of Western Siberia (Pur River basin)
https://doi.org/10.24057/2071-9388-2024-3741
Abstract
The study aimed to determine the levels, spatial and temporal variability of the concentrations, and forms of migration of metals and metalloids in the Pur River basin, which is one of the most important oil and gas producing areas in the north of Western Siberia. The study is based on the results of hydrological and geochemical studies conducted in 2021-2023 during the summer low water and spring flood periods. We found generally low content of dissolved metals and metalloids in water of the Pur River and its tributaries, not exceeding the world average values, except for Fe and Zn. Levels of metals and metalloids in the suspended matter were also lower than the global averages, except for Fe and Mn. Changes in the content of dissolved and suspended forms of metals caused by hydroclimatic factors and anthropogenic impact were determined. Near cities, the maximum concentrations of Zn, Cd, Cu and other metals in suspended matter are 3-5 and more times higher than the baseline values. Analysis of EF values for median contents allowed to identify the association of elements with considerable and high enrichment in suspended matter: Fe, Mn, Sb, As, Cd and Zn. The maximum EF values ranged from 25 to 45, which corresponds to very high degree of enrichment. Three groups of chemical elements were identified on the basis of D,S-analysis.
Keywords
About the Authors
M. LychaginRussian Federation
GSP-1, Leninskie Gory, Moscow, 119991
S. Porsheva
Russian Federation
GSP-1, Leninskie Gory, Moscow, 119991
D. Sokolov
Russian Federation
GSP-1, Leninskie Gory, Moscow, 119991
O. Erina
Russian Federation
GSP-1, Leninskie Gory, Moscow, 119991
E. Krastyn
Russian Federation
GSP-1, Leninskie Gory, Moscow, 119991
V. Efimov
Russian Federation
GSP-1, Leninskie Gory, Moscow, 119991
T. Dubrovskaya
Russian Federation
GSP-1, Leninskie Gory, Moscow, 119991
D. Kotov
Russian Federation
GSP-1, Leninskie Gory, Moscow, 119991
N. Kasimov
Russian Federation
GSP-1, Leninskie Gory, Moscow, 119991
References
1. Agbalyan E. V., Shinkaruk E. V. and Khoroshavin V.Y. (2016). Characteristics of water quality indicators in the Tazovsky district of the Yamalo-Nenets Autonomous Okrug (in Russian). Scientific Bulletin of the Yamalo-Nenets Autonomous Okrug, 2, 22–29.
2. Ali H., Khan E. and Ilahi I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. In: Journal of Chemistry , Vol. 2019. DOI: 10.1155/2019/6730305
3. Alves C.A., Vicente A.M.P., Calvo A.I., Baumgardner D., Amato F., Querol X., Pio C., Gustafsson M. / Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres // Atmospheric Environment, Volume 224, 2020, 117252, ISSN 1352-2310, https://doi.org/10.1016/j.atmosenv.2019.117252.
4. Azoulay A., Garzon P. and Eisenberg M.J. (2001). Comparison of the mineral content of tap water and bottled waters. Journal of General Internal Medicine, 16(3). DOI: 10.1111/j.1525-1497.2001.04189.x
5. Babushkin A.G., Moskovchenko D. and Pikunov S. V. (2007). Hydrochemical monitoring of surface waters of the Khanty-Mansiysk Autonomous Okrug - Yugra (in Russian).
6. Barker A.J., Douglas T.A., Jacobson A.D., McClelland J.W., Ilgen A.G., Khosh M.S., Lehn G.O. and Trainor T.P. (2014). Late season mobilization of trace metals in two small Alaskan arctic watersheds as a proxy for landscape scale permafrost active layer dynamics. Chemical Geology, 381. DOI: 10.1016/j.chemgeo.2014.05.012
7. Birch G.F. (2020). An assessment of aluminum and iron in normalisation and enrichment procedures for environmental assessment of marine sediment. Science of the Total Environment, 727. DOI: 10.1016/j.scitotenv.2020.138123
8. Chalov S., Moreido V., Sharapova E., Efimova L., Efimov V., Lychagin M. and Kasimov N. (2020). Hydrodynamic controls of particulate metals partitioning along the lower selenga river-main tributary of the Lake Baikal. Water (Switzerland), 12(5). DOI: 10.3390/W12051345
9. Chalov S., Prokopeva K., Magritsky D., Grigoriev V., Fingert E., Habel M., Juhls B., Morgenstern A., Overduin P.P. and Kasimov N. (2023). Climate change impacts on streamflow, sediment load and carbon fluxes in the Lena River delta. Ecological Indicators, 157. DOI: 10.1016/j.ecolind.2023.111252
10. Chalov S.R. and Efimov V.A. (2021). Mechanical composition of suspended sediments: classification, characteristics, spatial variability (in Russian). Bulletin of Moscow University. Series 5: Geography, 4, 91–103.
11. Chalov S.R., Shkolny D.I., Promakhova E.V., Leman V.N. and Romanchenko A.O. (2015). Formation of sediment runoff in regions of placer deposit development (in Russian). Geography and Natural Resources, 2, 22–30.
12. Chen L., Zhang H., Ding M. et al (2021) Exploration of the variations and relationships between trace metal enrichment in dust and ecological risks associated with rapid urban expansion. Ecotoxicol Environ Safety 212:111944. https://doi.org/10.1016/j.ecoenv.2021.111944
13. Chupakov A. V., Pokrovsky O.S., Moreva O.Y., Shirokova L.S., Neverova N. V., Chupakova A.A., Kotova E.I. and Vorobyeva T.Y. (2020). High resolution multi-annual riverine fluxes of organic carbon, nutrient and trace element from the largest European Arctic river, Severnaya Dvina. Chemical Geology, 538. DOI: 10.1016/j.chemgeo.2020.119491
14. de Paiva Magalhães D., da Costa Marques M.R., Baptista D.F. and Buss D.F. (2015). Metal bioavailability and toxicity in freshwaters. In: Environmental Chemistry Letters , Vol. 13, Issue 1. DOI: 10.1007/s10311-015-0491-9
15. Demina L.L., Gordeev V. V., Galkin S. V., Kravchishina M.D. and Aleksankina S.P. (2010). The biogeochemistry of some heavy metals and metalloids in the Ob River estuary-Kara Sea section. Oceanology, 50(5). DOI: 10.1134/S0001437010050103
16. Ediagbonya T.F., Nmema E., Nwachukwu P.. and Teniola O.D. (2015). Identification and quantification of heavy metals, coliforms and anions in water bodies using enrichment factors. Journal of Environmental Analitic Chemistry, 2(146), 2380–2391.
17. Fytianos K. (2001). Speciation analysis of heavy metals in natural waters: A review. In: Journal of AOAC International , Vol. 84, Issue 6. DOI: 10.1093/jaoac/84.6.1763
18. Gaillardet J., Viers J. and Dupré B. (2014). Trace Elements in River Waters. In Treatise on Geochemistry; : , 2014; pp. 225–272. Elsevier Science: Amsterdam, The Netherlands, 225–272.
19. Garnier J.M., Martin J.M., Mouchel J.M. and Sioud K. (1996). Partitioning of trace metals between the dissolved and particulate phases and particulate surface reactivity in the Lena River estuary and the Laptev Sea (Russia). Marine Chemistry, 53(3–4). DOI: 10.1016/0304-4203(95)00094-1
20. Gebhardt A.C., Gaye-Haake B., Unger D., Lahajnar N. and Ittekkot V. (2004). Recent particulate organic carbon and total suspended matter fluxes from the Ob and Yenisei Rivers into the Kara Sea (Siberia). Marine Geology, 207(1–4). DOI: 10.1016/j.margeo.2004.03.010
21. Gordeev V. V., Pokrovsky O.S., Zhulidov A. V., Filippov A.S., Gurtovaya T.Y., Holmes R.M., Kosmenko L.S., McClelland J.W., Peterson B.J. and Tank S.E. (2024). Dissolved Major and Trace Elements in the Largest Eurasian Arctic Rivers: Ob, Yenisey, Lena, and Kolyma. Water (Switzerland), 16(2). DOI: 10.3390/w16020316
22. Hartwell S.I., Lomax T. and Dasher D. (2020). Characterization of sediment contaminants in Arctic lagoons and estuaries. Marine Pollution Bulletin, 152. DOI: 10.1016/j.marpolbul.2019.110873
23. Horowitz A.J. (1986). A primer on trace metal-sediment chemistry. US Geological Survey Water-Supply Paper, 2277.
24. Hudson-Edwards K.A. (2003). Sources, mineralogy, chemistry and fate ofheavy metal-bearing particles in mining-affected river systems. Mineralogical Magazine, 67(2). DOI: 10.1180/0026461036720095
25. Inam E., Khantotong S., Kim K.W., Tumendemberel B., Erdenetsetseg S. and Puntsag T. (2011). Geochemical distribution of trace element concentrations in the vicinity of Boroo gold mine, Selenge Province, Mongolia. Environmental Geochemistry and Health, 33(SUPPL. 1). DOI: 10.1007/s10653-010-9347-1
26. Kasimov N., Shinkareva G., Lychagin M., Chalov S., Pashkina M., Thorslund J. and Jarsjö J. (2020). River water quality of the Selenga-Baikal Basin: Part II-metal partitioning under different hydroclimatic conditions. Water (Switzerland), 12(9). DOI: 10.3390/W12092392
27. Kasimov N., Shinkareva G., Lychagin M., Kosheleva N., Chalov S., Pashkina M., Thorslund J. and Jarsjö J. (2020). River water quality of the Selenga-Baikal Basin: Part i-spatio-temporal patterns of dissolved and suspended metals. Water (Switzerland), 12(8). DOI: 10.3390/W12082137
28. Kolesnichenko I., Kolesnichenko L.G., Vorobyev S.N., Shirokova L.S., Semiletov I.P., Dudarev O. V., Vorobev R.S., Shavrina U., Kirpotin S.N. and Pokrovsky O.S. (2021). Landscape, soil, lithology, climate and permafrost control on dissolved carbon, major and trace elements in the ob river, western siberia. Water (Switzerland), 13(22). DOI: 10.3390/w13223189
29. Krickov I. V. (2017). Geochemical features of river suspension of the meridional profile of Siberia (in Russian). West Siberian Peatlands of the Cycle and Cycle: Past and Present, 147–148.
30. Krickov Ivan V., Pokrovsky O.S., Manasypov R.M., Lim A.G., Shirokova L.S. and Viers J. (2019). Colloidal transport of carbon and metals by western Siberian rivers during different seasons across a permafrost gradient. Geochimica et Cosmochimica Acta, 265. DOI: 10.1016/j.gca.2019.08.041
31. Landner L. and Reuther R. (2005). Speciation, mobility and bioavailability of metals in the environment. Springer Netherlands, 139–274.
32. Liang S-Y, Cui J-L, Bi X-Y et al (2019) Deciphering source contributions of trace metal contamination in urban soil, road dust, and foliar dust of Guangzhou, southern China. Sci Total Environ 695:133596. https://doi.org/10.1016/j.scitotenv.2019.133596
33. Lychagin M., Chalov S., Kasimov N., Shinkareva G., Jarsjö J. and Thorslund J. (2017). Surface water pathways and fluxes of metals under changing environmental conditions and human interventions in the Selenga River system. Environmental Earth Sciences, 76(1). DOI: 10.1007/s12665-016-6304-z
34. Ma Y., Mummullage S., Wijesiri B. et al (2021) Source quantification and risk assessment as a foundation for risk management of metals in urban road deposited solids. J Hazard Mater 408:124912. https://doi.org/10.1016/j.jhazmat.2020.124912
35. Macklin M.G., Brewer P.A., Hudson-Edwards K.A., Bird G., Coulthard T.J., Dennis I.A., Lechler P.J., Miller J.R. and Turner J.N. (2006). A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology, 79(3–4). DOI: 10.1016/j.geomorph.2006.06.024
36. McClelland J.W., Tank S.E., Spencer R.G.M., Shiklomanov A.I., Zolkos S. and Holmes R.M. (2023). Arctic Great Rivers Observatory. Water Quality Dataset. Version 20230314. https://arcticgreatrivers.org/data
37. Meybeck M. (2003). Global Occurrence of Major Elements in Rivers. In: Treatise on Geochemistry , Vols. 5–9. DOI: 10.1016/B0-08-043751-6/05164-1
38. Mighanetara K., Braungardt C.B., Rieuwerts J.S. and Azizi F. (2009). Contaminant fluxes from point and diffuse sources from abandoned mines in the River Tamar catchment, UK. Journal of Geochemical Exploration, 100(2–3). DOI: 10.1016/j.gexplo.2008.03.003
39. Miranda L.S., Wijesiri B., Ayoko G.A., Egodawatta P. and Goonetilleke A. (2021). Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Research, 202. DOI: 10.1016/j.watres.2021.117386
40. Moskovchenko D. V. (1998). Oil and gas production and the environment: ecological and geochemical analysis of the Tyumen region (in Russian).
41. Müller A., Österlund H., Marsalek J. and Viklander M. (2020). The pollution conveyed by urban runoff: A review of sources. In: Science of the Total Environment , Vol. 709. DOI: 10.1016/j.scitotenv.2019.136125
42. Opekunova M.G., Opekunov A.Y., Kukushkin S.Y. and Lisenkov S.A. (2020). Elemental composition of soil waters in northern Siberia and its change under the influence of oil and gas production (in Russian). Fourth Vinogradov Readings. Hydrology from Knowledge to Worldview, 750–755.
43. Pant P., Harrison R.M., / Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review // Atmospheric Environment, Volume 77, 2013, Pages 78-97, https://doi.org/10.1016/j.atmosenv.2013.04.028.
44. Pokrovsky O.S., Manasypov R.M., Loiko S.., Krickov I.A., Kopysov S.., Kolesnichenko L.G., Vorobyev S.N. and Kirpotin S.N. (2016). Trace element transport in western Siberian rivers across a permafrost gradient. Biogeosciences, 13(6), 1877–1900.
45. Pokrovsky O.S., Manasypov R.M., Loiko S., Shirokova L.S., Krickov I.A., Pokrovsky B.G., Kolesnichenko L.G., Kopysov S.G., Zemtzov V.A., Kulizhsky S.P., Vorobyev S.N. and Kirpotin S.N. (2015). Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers. Biogeosciences, 12(21). DOI: 10.5194/bg-12-6301-2015
46. Popov P.A. (2013). Fishes of the Subarctic of Western Siberia: habitat conditions, structure of ichthyocenoses, ecology (in Russian). Romanova T.I. and Samarin V.A. (2019). Features of the chemical composition of surface waters and bottom sediments of rivers and lakes of the Khanty-Mansi Autonomous Okrug - Yugra. International Scientific Journal, 12–1(90), 154–163.
47. Rudnick R.L. and Gao S. (2013). Composition of the Continental Crust. In: Treatise on Geochemistry: Second Edition , Vol. 4. DOI: 10.1016/B978-0-08-095975-7.00301-6
48. Ryan J.D. and Windom H.L. (1988). A geochemical land statistical approach for assessing metal pollution in coastal sediments. Metals in Coastal Environments of Latin America. Berlin Heidelberg: Springer.
49. Saravanan A., Senthil Kumar P., Hemavathy R.V., Jeevanantham S., Harikumar P., Priyanka G., Rebekah Angelina Devakirubai D. / A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment // Science of The Total Environment, Volume 812, 2022, 152456, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2021.152456.
50. Savenko V. (2006). World rivers’ suspended sediment chemical composition (In Russian). GEOS.
51. Savenko A.V., Savenko V.S. and Pokrovsky O.S. (2020). New data on the content of dissolved trace elements in the waters of Russian Arctic rivers (in Russian). Reports of the Russian Academy of Sciences. Earth Sciences, 491(2), 82–88.
52. Savenko A.V. and Savenko V.S. (2024). Trace Element Composition of the Dissolved Matter Runoff of the Russian Arctic Rivers. In: Water (Switzerland), Vol. 16, Issue 4. DOI: 10.3390/w16040565
53. Schiff K.C. and Weisberg S.B. (1999). Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Marine Environmental Research, 48(2). DOI: 10.1016/S0141-1136(99)00033-1
54. Song Y, Xie S, Zhang Y et al (2006) Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Sci Total Environ 372:278–286. https://doi.org/10.1016/j.scitotenv.2006.08.041
55. Soromotin A., Moskovchenko D., Khoroshavin V., Prikhodko N., Puzanov A., Kirillov V., Koveshnikov M., Krylova E., Krasnenko A. and Pechkin A. (2022). Major, Trace and Rare Earth Element Distribution in Water, Suspended Particulate Matter and Stream Sediments of the Ob River Mouth. Water (Switzerland), 14(15). DOI: 10.3390/w14152442
56. Thorpe A., Harrison R.M. Sources and properties of non-exhaust particulate matter from road traffic: a review // Sci.Total Environ. 2008. V. 400. №. 1–3. P. 270–282.
57. Thorslund J., Jarsjö J., Chalov S.R. and Belozerova E. V. (2012). Gold mining impact on riverine heavy metal transport in a sparsely monitored region: The upper Lake Baikal Basin case. Journal of Environmental Monitoring, 14(10). DOI: 10.1039/c2em30643c
58. Thurston G.D., Ito K., Lall R. (2011) A source apportionment of U.S. fine particulate matter air pollution. Atmos Environ 45:3924–3936. https://doi.org/10.1016/j.atmosenv.2011.04.070
59. Uvarova V.I. (2011). Assessment of the chemical composition of water and bottom sediments of the Nadym River. Bulletin of Ecology, Forestry and Landscape Science, 11, 143–153.
60. Viers J., Dupré B. and Gaillardet J. (2009). Chemical composition of suspended sediments in World Rivers: New insights from a new database. Science of the Total Environment, 407(2), 853–868.
61. Violante A., Cozzolino V., Perelomov L., Caporale A.G. and Pigna M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3). DOI: 10.4067/S0718-95162010000100005
62. Wu Q., Zhou H., Tam N.F.Y., Tian Y., Tan Y., Zhou S., Li Q., Chen Y. and Leung J.Y.S. (2016). Contamination, toxicity and speciation of heavy metals in an industrialized urban river: Implications for the dispersal of heavy metals. Marine Pollution Bulletin, 104(1–2). DOI: 10.1016/j.marpolbul.2016.01.043
63. Xu T., Wang L., Wang X., Li T., Zhan X. / Heavy metal pollution of oil-based drill cuttings at a shale gas drilling field in Chongqing, China: A human health risk assessment for the workers // Ecotoxicology and Environmental Safety, Volume 165, 2018, Pages 160-163, ISSN 0147-6513, https://doi.org/10.1016/j.ecoenv.2018.08.104.
64. Zheng Q., Hou J., Hartley W., Ren L., Wang M., Tu S., Tan W. / As(III) adsorption on Fe-Mn binary oxides: Are Fe and Mn oxides synergistic or antagonistic for arsenic removal? // Chemical Engineering Journal, Volume 389, 2020, 124470, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2020.124470.
Review
For citations:
Lychagin M., Porsheva S., Sokolov D., Erina O., Krastyn E., Efimov V., Dubrovskaya T., Kotov D., Kasimov N. Levels, D,S-patterns and source identification of metals and metalloids in river waters of the gas-producing region in the north of Western Siberia (Pur River basin). GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2024;17(4):121-145. https://doi.org/10.24057/2071-9388-2024-3741