Advanced search


Full Text:


The numerical model simulations of storm activity in the White, Baltic andBarentsSeaswere analyzed for the period from 1979 to2015. Inthis paper the storm number of these seas was calculated. The connections of wind wave climate with indecies of large-scale atmospheric circulation such as NAO, AO and SCAND were estimated. Also, the future changes of wind wave climate were analysed.


About the Authors

Stanislav Myslenkov
Lomonosov Moscow State University; P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences; Hydrometeorological Research Centre of the Russian Federation
Russian Federation
Stanislav A. Myslenkov is a Senior Researcher at the Department of Oceanology, Faculty of Geography, Lomonosov Moscow State University.

Alisa Medvedeva
P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

Victor Arkhipkin
Lomonosov Moscow State University
Russian Federation

Margarita Markina
Lomonosov Moscow State University; P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

Galina Surkova
Lomonosov Moscow State University
Russian Federation

Aleksey Krylov
Lomonosov Moscow State University
Russian Federation

Sergey Dobrolyubov
Lomonosov Moscow State University
Russian Federation

Sergey Zilitinkevich
Lomonosov Moscow State University; Finnish Meteorological Institute
Russian Federation
Moscow, Helsinki

Peter Koltermann
Lomonosov Moscow State University
Russian Federation


1. Arkhipkin V., Dobrolyubov S., Myslenkov S., and Korablina A. (2015). The Wave Climate of the White Sea, Changing Climate and Socio-Economic Potential of the Russian Arctic. In: S. Sokratov, ed., 1st ed. Moscow: Liga-Vent, pp.48-58 (in Russian with English summary).

2. Barnston A. and Livezey R. (1987). Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Monthly weather review, 115(6), pp. 1083-1126.

3. Bertin X., Prouteau E., and Letetrel C. (2013). A significant increase in wave height in the North Atlantic Ocean over the 20th century. Global and Planetary Change, 106, pp. 77-83.

4. Booij N., Ris R., and Holthuijsen L. (1999). A Third-Generation Wave Model for Coastal Regions. 1. Model Description and Validation. Journal of geophysical research: Oceans, 104(C4), pp.7649-7666.

5. Broman B., Hammarklint T., Rannat K., Soomere T., and Valdmann, A. (2006). Trends and extremes of wave fields in the north-eastern part of the Baltic Proper. Oceanologia, 48(S), pp.165-184.

6. Dee D., Uppala S., Simmons A., Berrisford P., Poli P., Kobayashi S., ..., and Bechtold P. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system, QJ Roy. Meteor. Soc., 137, pp. 553–597.

7. De León, S., and Soares, C. (2015). Hindcast of the Hércules winter storm in the North Atlantic. Natural Hazards, 78(3), pp.1883-1897.

8. Field C., Barros V., Stocker T., Qin D., Dokken D., and Ebi K. (2012). IPCC 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of the intergovernmental panel on climate change. Cambridge University Press. Cambridge: Cambridge University Press.

9. Hasselmann S. and Hasselmann K. (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral. Journal of Physical Oceanography, 15(11), pp.1369-1377.

10. National Weather Service Climate Prediction Center (2017). [online] Available at: [Accessed 01 Nov. 2017].

11. Hünicke B., Zorita E., Soomere T., Madsen K. S., Johansson M., and Suursaar Ü. (2015). Recent change—Sea level and wind waves. In Second Assessment of Climate Change for the Baltic Sea Basin (pp. 155-185). Springer, Cham.

12. Huth R., Beck C., Philipp A., Demuzere M., Ustrnul Z., Cahynová M., Kyselý J., and Tveito O. (2008). Classifications of Atmospheric Circulation Patterns Recent Advances and Applications. Trends and Directions in Climate Research, Ann. N.Y. Acad. Sci., 1146(1), pp.105-152. DOI: 10.1196/annals.1446.019.

13. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., …, and Zhu Y. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American meteorological Society, 77(3), pp. 437-471.

14. Kislov A., Surkova G., and Arkhipkin V. (2016). Occurrence Frequency of Storm Wind Waves in the Baltic, Black, and Caspian Seas under Changing Climate Conditions. Russian Meteorology and Hydrology, 41(2), pp.121-129 (in Russian).

15. Komen G., Cavaleri L., Donelan M., Hasselmann K., Hasselmann S., and Janssen P. (1994). Dynamics and modeling of ocean waves. Cambridge: Cambridge University Press.

16. Korablina A., Arkhipkin V., Dobrolyubov S., and Myslenkov S. (2016). Modeling storm surges and wave climate in the White and Barents Seas. In Saint-Petersburg, Russia: EMECS 11 – Sea Coasts XXVI Joint Conference «Managing Risks to Coastal Regions and Communities in a Changing World», 2016, pp.184-194. DOI: 10.21610/conferencearticle_58b4317442aca

17. Kriezi E. and Broman B. (2008). Past and future wave climate in the Baltic Sea produced by the SWAN model with forcing from the regional climate model RCA of the Rossby Centre. In US/EU-Baltic International Symposium, 2008 IEEE/ OES, pp. 1-7.

18. Kudryavtseva N. and Soomere T. (2017). Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate. arXiv preprint arXiv:1705.01307.

19. Liu Q., Babanin A., Zieger S., Young I., and Guan C. (2016). Wind and Wave Climate in the Arctic Ocean as Observed by Altimeters. Journal of Climate, 29(22), pp.7957-7975.

20. Lopatukhin L., Buhanovskij A., Degtyarev A., and Rozhkov V. (2003). Reference data of wind and waves climate of the Barents, Okhotsk, and Caspian Seas. Russian Maritime Register of Shipping, Saint-Petersburg: SPB (in Russian).

21. Lopatukhin L., Buhanovskij A., Ivanov S., and Chernysheva E. (2006). Reference data on the regime of wind and waves of the Baltic, Northern, Black, Azov and Mediterranean Seas. Russian Maritime Register of Shipping. Saint-Petersburg: SPB (in Russian).

22. Medvedeva A., Arkhipkin V., Myslenkov S., and Zilitinkevich S. (2015). Wave climate of the Baltic Sea following the results of the SWAN spectral model application. Moscow University Bulletin. Series 5. Geography (1), pp.12-22 (in Russian with English summary).

23. Medvedeva A., Myslenkov S., Medvedev I., Arkhipkin V., Krechik V., and Dobrolyubov S. (2016). Numerical Modeling of the Wind Waves in the Baltic Sea using the Rectangular and Unstructured Gridsandthe Reanalysis NCEP/CFSR. Proceedingsofthe Hydrometeorological Research Center of the Russian Federation (362), pp. 37-54 (in Russian with English summary).

24. Mokhov I., Semenov V., Khon V., and Pogarsky F. (2013). Change of sea ice content in the Arctic and the associated climatic effects, detection and simulation. Led i Sneg, 53(2), pp. 53-62.

25. Moss R., Babiker W., Brinkman S., Calvo E., Carter T., Edmonds J., ... and Jones R. N. (2008). Towards New Scenarios for the Analysis of Emissions: Climate Change, Impacts and Response Strategies.

26. Myslenkov S., Arkhipkin V., and Koltermann K.P. (2015a). Evaluation of swell height in the Barents and White Seas. Moscow University Bulletin. Series 5. Geography (5), pp. 59-66 (in Russian with English summary).

27. Myslenkov S., Platonov V., Toropov P., and Shestakova A. (2015b). Simulation of storm waves in the Barents Sea. Moscow University Bulletin. Series 5. Geography (6), pp.65-75 (in Russian with English summary).

28. Myslenkov S.A., Golubkin P.A. and Zabolotskikh E.V. (2016). Evaluation of wave model in the Barents Sea under winter cyclone conditions. Moscow University Bulletin. Series 5. Geography (6), pp.26-32 (in Russian with English summary).

29. Reistad M., Breivik O., Haakenstad H., Aarnes O. J., Furevik B. R., and Bidlot J. R. (2011). A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. Journal of Geophysical Research: Oceans, 116(C5).

30. Rusu L., de León S., and Soares C. (2015). Numerical modeling of the North Atlantic storms affecting the West Iberian coast. Maritime Technology and Engineering, 978-1.

31. Saha S. et al. (2010). The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc., 91(8), pp.1015-1057.

32. Saha S. et al. (2014). The NCEP Climate Forecast System Version 2. J. Climate. 27, pp. 2185- 2208. DOI: 10.1175/JCLI-D-12-00823.1.

33. Soomere T. and Räämet A. (2014). Decadal changes in the Baltic Sea wave heights. Journal of Marine Systems, 129, pp. 86-95.

34. Soomere T., Behrens A., Tuomi L. and Nielsen J. (2008). Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Natural Hazards & Earth System Sci., 8(1), pp.37-46.

35. Stocker T. (Ed.). (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

36. Stopa J., Ardhuin F., and Girard-Ardhuin F. (2016). Wave climate in the Arctic 1992-2014: seasonality and trends. Cryosphere, 10(4), pp.1605-1629.

37. Surkova G. (2015 October). Climate projection of storm weather patterns, In: Özhan, E. (Ed.). Proceedings of the Twelfth International Conference on the Mediterranean Coastal Environment MEDCOAST 15, Varna, Bulgaria, pp.531-540.

38. Surkova G., Arkhipkin V., and Kislov A. (2013). Atmospheric circulation and storm events in the Black Sea and Caspian Sea. Central European Journal of Geosciences, 5(4), pp.548-559. DOI : 10.2478/s13533-012-0150-7.

39. Surkova G. and Krylov A. (2017) Extremely Strong Winds And Weather Patterns // Proceedings of the Thirteenth International Conference on the Mediterranean Coastal Environment MEDCOAST 17. Turkey.

40. Taylor K. E., Stouffer R. J., and Meehl G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), pp.485-498

41. Tolman H. L. (2009). User manual and system documentation of {WAVEWATCH-III} Version 3.14. US: Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Centers for Environmental Prediction.

42. Wang X. L. and Swail V. R. (2001). Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. Journal of Climate, 14(10), pp.2204- 2221. DOI:10.1175/1520-0442(2001)014<2204:coewhi>;2.

43. Zaitseva-Pärnaste I., Suursaar Ü., Kullas T., Lapimaa S., and Soomere T. (2009). Seasonal and long-term variations of wave conditions in the northern Baltic Sea. J. Coast. Res. SI(56) pp.277-281.

For citation:

Myslenkov S., Medvedeva A., Arkhipkin V., Markina M., Surkova G., Krylov A., Dobrolyubov S., Zilitinkevich S., Koltermann P. LONG-TERM STATISTICS OF STORMS IN THE BALTIC, BARENTS AND WHITE SEAS AND THEIR FUTURE CLIMATE PROJECTIONS. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2018;11(1):93-112.

Views: 801

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)