Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Impact assessment of river regulations using 1d morphodynamic modeling on the Upper Hungarian Danube

https://doi.org/10.24057/2071-9388-2024-3390

Abstract

The geometry of watercourses shows that they undergo continuous deformation towards a dynamic equilibrium state. Once this is reached, further changes in the bed can be observed, but they are not expected to cause significant deviations from the dynamic equilibrium state. The dynamic equilibrium state will likely change due to significant natural or artificial processes. The main question is what new riverbed geometry or flow conditions (peak water levels) can be expected. In our paper, we investigate the impact of past interventions on the dynamic equilibrium state of the Upper Danube in Hungary. We built a 1D morphodynamic model for the section under study. The model was improved by incorporating the mixed grain composition of the bed and bedload material and considering the backwater effect. The model was parameterised with data from the 19th century, i.e. the natural state. The model allowed us to perform a century-scale study. The model gave accurate results of 13 cm and 3 cm for the incorporation of the interventions and also predicted the backfilling in the studied section. Using the 1D approach, we obtained a model that can study a more extended section, such as a more than 100 km reach. The 1D model can provide a temporal estimate of the impact of each intervention, Such as the installation of wing dam fields and water dams and the elaboration of artificial cutoffs.

About the Authors

Emese Nyiri
Budapest University of Technology and Economics, Faculty of Civil Engineering, Department of Hydraulics and Water Resources Engineering
Hungary

Műegyetem rakpart, Budapest, 1111



Gergely T. Török
Budapest University of Technology and Economics, Faculty of Civil Engineering, Department of Hydraulics and Water Resources Engineering ; HUN-REN-BME Water Management Research Group, Department of Hydraulic and Water Resources Engineering, Budapest University of Technology and Engineering ; National Institute of Water and Atmospheric Research
Hungary

Műegyetem rakpart, Budapest, 1111

Műegyetem str. 3,1111 Budapest

Kyle Street 10, Christchurch 8011



References

1. E. Eke, G. Parker, Y. Shimizu: Numerical modeling of erosional and depositional bank processes in migrating river bends with self–formed width: Morphodynamics of bar push and bank pull, Journal of Geophysical Research: Earth Surface 119 (7), 1455-1483.

2. E. Lanfranconconi: Magyarország ármentesítése, 1882 .

3. E. Nyiri: Folyók dinamikus egyensúlyi állapotát becslő eljárás kidolgozása és alkalmazása a magyarországi Felső-Dunán, BME-ÉMK TDK, Budapest, 2020.

4. E. Nyiri, G. T. Török and S. Baranya Impact assessment of river regulations of the past century using 1D morphodynamic modeling on the Upper Hungarian Danube. GEOPHYSICAL RESEARCH ABSTRACTS: EGU GENERAL ASSEMBLY 2023

5. ÉDUVIZIG: A Duna 2022-2023 évi hajóút-kitűzési terve az 1811-1708 folyamkilométerek közötti szakaszon, 2022

6. Fischer-Antze, T., N. R. B. Olsen, and D. Gutknecht (2008), Three-dimensional CFD modeling of morphological bed changes in the Danube River, Water Resour. Res., 44, W09422, doi:10.1029/2007WR006402.

7. F. Pomázi, S. Baranya: Acoustic based assessment of cross-sectional concentration inhomogeneity at a suspended sediment monitoring station in a large river. Acta Geophys 70(5), 2361-2377, 2022

8. F. Pomázi, S. Baranya Comparative assessment of fluvial suspended sediment concentration analysis methods. Water 12(3):873, 2020

9. G. Parker: 1D Sediment Transport Morphodynamics with applications To Rivers and Turbidity Currents, e-book, 2004.

10. G. Parker, C. An, M. P. Lamb, M. H. Garcia, E. H. Dingle and J. G. Venditti: Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics, 2024.

11. G. T. Török: Vegyes szemösszetételű folyómeder morfodinamikájának numerikus vizsgálata, BME- ÉMK TDK, Budapest, 2011.

12. G.T. Török, G. Parker: Significance of Time Dependence in The Effect of Wing Dams on Water Levels, 2022 Google Maps, online aerial view, Google, 2022

13. J. Bogárdi: A hordalékmozgás elmélete. Budapest, Hungary: Akadémiai Kiadó, 1955

14. K. Farkas-Iványi, A. Trájer: The influence of the river regulations on the aquatic habitats in river Danube, at the bodak branch-system, Hungary and Slovakia, Budapest, 2015

15. K. Holubová, M. Comaj, M. Lukác, K. Mravcová, Z. Capeková, and M. Antalová: Final report in DuRe Flood project - ‘Danube Floodplain Rehabilitation to Improve Flood Protection and Enhance the Ecological Values of the River in the Stretch between Sap and Szob, Bratislava,

16. K. Holubová, Z. Capeková, and J. Szolgay: Impact of hydropower schemes at bedload regime and channel morphology of the Danube River, in River Flow 2004: Proceedings of the Second International Conference on Fluvial Hydraulics, 2004, no. 1, pp. 135–142.

17. K. Naito and G. Parker: Can Bankfull Discharge and Bankfull ChannelCharacteristics of an Alluvial MeanderingRiver be Cospecified From a FlowDuration Curve?, Journal of Geophysical Research: Earth Surface 124 (10), 2381-2401.

18. K. Tőry: A Duna és szabályozása, Budapest, Hungary: Akadémiai Kiadó, 1952.

19. L. Goda: A Duna gázlói Pozsony-Mohács között, Vízügyi Közlemények, LXXVII. évf., 1995 évi. 1.füzet, Budapest, 1995

20. L. Rákóczi: Mederanyag-minták információtartalma és hasznosítása a folyószabályozásban. MIIT orászágos vándorgyűlése, Keszthely, 1979.

21. L. Rákócz: A Duna hordalékjárása, Vízügyi Közlemények LXXV. évfolyam/2, 1993

22. L. Rákóczi and J. Sass: A Felső-Duna és a szigetközi mellékágak mederalakulása a dunacsúnyi duzzasztómű üzembe helyezése után; Vízügyi Közlemények, LXXVII. évf., 1995 évi 1.füzet, Budapest, 1995

23. L. Rákóczi: A Duna-meder sorsa Szap és Szob között, Vízügyi Közlemények, LXXXII. évf., 2000 évi. 2.füzet, Budapest, 2000 M.kir. Állami nyomda: Duna hossz-szelvénye Dévény-Budapest között 3321/910, 1910

24. M. Liedermann, P. Gmeiner, A. Kreisler, M. Tritthart, and H. Habersack: Insights into bedload transport processes of a large regulated gravel-bed river, Earth Surf. Process. Landforms 43(2), 2017.

25. M. Wong and G. Parker: Reanalysis and Correction of Bed-Load Relation of MeyerPeter and Müller Using Their Own Database, Journal of Hydraulic Engineering 132(11), 2006.

26. N. Pinter, B. S. Ickes, J. h. Wlosinski, R. R. van der Ploeg: Trends in flood stages: Contrasting results from the Mississippi and Rhine River systems, 2006

27. N. Pinter, R. A. Heine: Hydrodynamic and morphodynamic response to river engineering documented by fixed-discharge analysis,Lower Missouri River, USA, 2004

28. Országos Vízügyi Főigazgatóság, Vízrajzi Évkönyvek. Budapest, 1886-1190 S. Baranya and J. Józsa: Flow analysis in river danube by field measurement and 3d cfd turbulence modelling, Budapest, 2006

29. S. Baranya, L. Goda, J. Józsa and L. Rákóczi: Complex hydro- and sediment dynamics survey of two critical reaches on the Hungarian part of river Danube, Budapest, 2008

30. VITUKI Tanulmánytár XXVI. 5/b (77-78), 1954 51

31. Wilcock, P. R., and Crowe, J. C., Surface-based transport model for mixed-size sediment, Journal of Hydraulic Engineering, 129(2), 120- 128., 2003


Review

For citations:


Nyiri E., Török G. Impact assessment of river regulations using 1d morphodynamic modeling on the Upper Hungarian Danube. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2024;17(4):88-100. https://doi.org/10.24057/2071-9388-2024-3390

Views: 266


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)