Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

EVIDENCE OF ATMOSPHERIC RESPONSE TO METHANE EMISSIONS FROM THE EAST SIBERIAN ARCTIC SHELF

https://doi.org/10.24057/2071-9388-2018-11-1-85-92

Abstract

Average atmospheric methane concentration (CH4) in the Arctic is generally higher than in other regions of the globe. Due to the lack of observations in the Arctic there is a deficiency of robust information about sources of the methane emissions. Measured concentrations of methane and its isotopic composition in ambient air can be used to discriminate sources of CH4. Here we present the results of measurements of the atmospheric methane concentration and its isotope composition (δ13CCH4) in the East Siberian Arctic Seas during the cruise in the autumn 2016. Local sections where the concentration of methane in the near-water layer of the atmosphere reaches 3.6 ppm are identified. The measurements indicated possibility of formation of high methane peaks in atmospheric surface air above the East Siberian Arctic Shelf (ESAS) where methane release from the bottom sediments has been assumed.

About the Authors

Natalia Pankratova
A.M. Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences
Russian Federation

Natalia V. Pankratova currently works as Scientific Researcher in the Laboratory of Atmospheric Gaseous Species 

Moscow



Andrey Skorokhod
A.M. Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences
Russian Federation
Moscow


Igor Belikov
A.M. Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences
Russian Federation
Moscow


Nikolai Elansky
A.M. Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences
Russian Federation
Moscow


Vadim Rakitin
A.M. Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences
Russian Federation
Moscow


Yury Shtabkin
A.M. Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences
Russian Federation
Moscow


Elena Berezina
A.M. Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences
Russian Federation
Moscow


References

1. Berchet A., Bousquet P., Pison I., Locatelli R., Chevallier F., Paris J.-D., Dlugokencky E. J., Laurila T., Hatakka J., Viisanen Y., Worthy D. E. J., Nisbet E., Fishe, R., France J., Lowry D., Ivakhov V., and Hermansen O. (2016). Atmospheric constraints on the methane emissions from the East Siberian Shelf, Atmos. Chem. Phys., 16, 4147-4157, doi:10.5194/acp-16-4147-2016.

2. Dlugokencky E.J., R.C. Myers P.M. Lang, K.A. Masarie, A.M. Crotwell, K.W. Thoning, B.D. Hall, J.W. Elkins, and L.P. Steele (2005), Conversion of NOAA CMDL atmospheric dry air methane mole fractions to a gravimetrically-prepared standard scale, J. Geophys. Res., 110, D18306, doi : 10.1029/2005JD006035.

3. Dlugokencky E. J., Nisbet E. G., Fisher R. E., and Lowry D. (2011), Global atmospheric methane: Budget, changes, and dangers, Philos. Trans. R. Soc. London, Ser. A., 369, pp. 2058–2072.

4. Edson J. B., Hinton A. A., Prada K. E., Hare J. E., and Fairall C. W. (1998). Direct covariance flux estimates from mobile platforms at sea, J. Atmos. Oceanic Technol., 15, 547–562, doi:10.1175/1520-0426

5. Fisher R., Lowry D., Wilkin O., Sriskantharajah S., Nisbet E.G. (2006). High-precision, automated stable isotope analysis of atmospheric methane and carbon dioxide using continuous-flow isotope-ratio mass spectrometry, Rapid Communications in Mass Spectrometry V. 20, pp. 200-208.

6. Fisher R. E., Sriskantharajah S., Lowry D., Lanoisellé M., Fowler C. M. R., James R. H., Hermansen O., Lund Myhre C., Stohl A., Greinert J., Nisbet-Jones P. B. R., Mienert J., and Nisbet E. G. (2011). Arctic methane sources: Isotopic evidence for atmospheric inputs, Geophys. Res. Lett., 38, L21803, doi:10.1029/2011GL049319.

7. Myhre G., Shindell D., Bréon F.-M., Collins W., Fuglestvedt J., Huang J., Koch D., Lamarque J.-F., Lee D., Mendoza B., Nakajima T., Robock A., Stephens G., Takemura T., and Zhang H.(2013). Anthropogenic and natural radiative forcing, in: Climate Change 2013: the Physical Science Basis. ContributionofWorking Group I tothe Fifth Assessment Reportofthe Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK, New York, NY, USA, pp. 659–740.

8. Pataki D. E., Ehleringer J. R., Flanagan L. B., Yakir D., Bowling D. R., Still C. J., Buchmann N., Kaplan J. O., and Berry J. A. (2003). The application and interpretation of Keeling plots in terrestrial carbon cycle research, Global Biogeochem. Cycles, 17, 1022, doi:10.1029/2001GB001850.1.

9. Quay P., Stutsman J., Wilbur D., Snover A., Dlugokencky E. J., and Brown T. (1999). The isotopic composition of atmospheric CH4. Glob. Biogeochem. Cy., 13, pp. 445-461.

10. Rigby M., Manning A. J., and Prinn R. G.(2012). The value of high-frequency, high-precision methane isotopologue measurements for source and sink estimation, J. Geophys. Res: Atmos., 117(D12), doi:10.1029/2011JD017384.

11. Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Salomatin A., Chernykh D., Kosmach D., Panteleev G., Nicolsky D., Samarkin V., Joye S., Charkin A., Dudarev O., Meluzov A., Gustafsson O. ( 2015). The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Phil. Trans. R. Soc. A 373: 20140451. http://dx.doi.org/10.1098/rsta.2014.0451.

12. Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D., Chernykh D., Stubbs C., Nicolsky D., Tumskoy V., Gustafsson O. (2014). Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience, Vol. 7, pp. 64–70.

13. Shakhova N., Semiletov I., Leifer I., Salyuk A., Rekant P., and Kosmach D. (2010). Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf, J. Geophys. Res., 115, C08007, doi:10.1029/2009JC005602.

14. Skorokhod A.I., Pankratova N.V., Belikov I.B., Thompson R. L., Novigatsky A. N., Golitsyn G. S. (2016). Observations of atmospheric methane and its stable isotope ratio (δ13C) over the Russian Arctic seas from ship cruises in the summer and autumn of 2015, Dokl. Earth Sc. 470: 1081. doi:10.1134/S1028334X16100160.

15. Thornton B. F., Geibel M. C., Crill P. M., Humborg C., and Mörth C.-M. (2016). Methane fluxes from the sea to the atmosphere across the Siberian shelf seas, Geophys. Res. Lett., 43, DOI: 10.1002/2016GL068977.

16. Warwick N. J., Cain M. L., Fisher R., France J. L., Lowry D., Michel S. E., Nisbet E. G., Vaughn B. H., White J. W. C., and Pyle J. A. (2016). Using δ13C-CH4 and δD-CH4 to constrain Arctic methane emissions. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-408.


Review

For citations:


Pankratova N., Skorokhod A., Belikov I., Elansky N., Rakitin V., Shtabkin Yu., Berezina E. EVIDENCE OF ATMOSPHERIC RESPONSE TO METHANE EMISSIONS FROM THE EAST SIBERIAN ARCTIC SHELF. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2018;11(1):85-92. https://doi.org/10.24057/2071-9388-2018-11-1-85-92

Views: 2187


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)