Advanced search


Full Text:


Lakes are an important natural source of methane – significant greenhouse gas of the modern atmosphere. Monitoring of methane emission from lakes ofnorthern territoriesis needed to update the available estimates of CH4 emission intensity into the atmosphere and to obtain multi-year series of observations. Field measurements of diffuse methane fluxes were carried out on lakes at different stages of thermokarst process located in Yamalo-Nenets Autonomous District (Western Siberia, Russia) during summer 2016 using static chamber method. Some statistical characteristics of measured fluxes were calculated (medians vary from 0.46 to 0.93 mgC-CH4∙m ∙h ), as well as annual diffuse emissions from studied lakes, which values are determined by the area of the lake’s water surface. Daily dynamics of methane fluxes were defined and approximation of fluxes with simple model was done, major factors are temperatures of lake bottom and of the surface air layer.

About the Authors

Vladimir S. Kazantsev
A.M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences
Russian Federation
Graduated from Moscow State University, Soil science faculty. PhD in biology (2013). Researcher of Laboratory of mathematical ecology A.M. Obukhov Institute of Atmospheric Physics RAS

Liudmila A. Krivenok
Institute of Forest Science, Russian Academy of Sciences
Russian Federation
Junior researcher at Laboratory of Mathematical Ecology in Institute of Atmospheric Physics RAS and a PhD student at Institute of Forest Science RAS.

Maria Yu. Cherbunina
Lomonosov Moscow State University
Russian Federation
Research engineer at geocryological department


1. Anderson B., Bartlett K., Frolking S., Hayhoe K., Jenkins J. and Salas W. (2010). Methane and nitrous oxide emissions from natural sources. Washington DC: US EPA.

2. Andrianov V., Voitsekhovskaya I., Grechiscshev S., Krishchuk L., Nevecherya V., Stremyakov A., Uvarkin Yu., Shamanova I., Sheshin Yu. and Shur Yu. (1989). Conditions of development and expansion of cryogenic geological processes and phenomena. In E.D. Ershov, ed., Geokriologia SSSR. Zapadnaya Sibir’. Moscow: Nedra, pp. 135-155. (in Russian).

3. Borovikov V. (2001). STATISTICA: art of computer data processing. For professionals. St. Petersburg: Piter. (in Russian).

4. Chanton J., Martens C., Kelley C., Crill P. and Showers W. (1992). Methane transport mechanisms and isotopic fractionation in emergent macrophytes of an Alaskan tundra lake. Journal of Geophysical Research: Atmospheres, 97(D15), pp. 16681-16688. DOI: 10.1029/90JD01542.

5. Desyatkin A., Takakai F., Fedorov P., Nikolaeva M., Nikolaev A., Hatano R. and Desyatkin R. (2009). Methane emission at taiga alas ecosystems of Central Yakutia. Nauka i obrazovanie, 3, pp. 72-76. (in Russian).

6. Firsov N., Anan’eva G., Dubrovin V. and Ukraintseva N. (1989). Ust’purovsko-Tazovsky region. In E.D. Ershov, ed., Geokriologia SSSR. Zapadnaya Sibir’. Moscow: Nedra, pp. 247-251. (in Russian).

7. Glagolev M. (2008). The emission of methane: ideology and methodology of «standard model» for Western Siberia. Environmental Dynamics and Global Climate Change. S1. pp. 176-190. (in Russian).

8. Glagolev M. and Sabrekov A. (2008). Reconstruction of probability density distribution by histogram method in soil science and ecology. Environmental Dynamics and Global Climate Change, S1, pp. 55-83. (in Russian).

9. Glagolev M. and Suvorov G. (2008). Wetlands in the problem of methane as greenhouse gas: what was investigated and what is forthcoming?. Interactive journal of ecological soil science, 2(8), pp. 19-43. (in Russian).

10. Glagolev M., Golovatskaya E. and Shnyrev N. (2008). Greenhouse gas emission in West Siberia. Contemporary Problems of Ecology, 1(1), pp. 136-146. DOI: 10.1134/S1995425508010165.

11. Glagolev M., Kleptsova I, Filippov I., Kazantsev V. and Maksyutov Sh. (2010a). Methane emission from West Siberian tundra mires. Tomsk State Pedagogical University Bulletin, 3(93), pp. 78-86. (in Russian).

12. Glagolev M., Kleptsova I., Kazantsev V., Filippov I., Machida T. and Maksyutov Sh. (2009). Methane emission from typical peatland landscapes of Western Siberia forest-steppe: for «standard model» Bc5. Tomsk State Pedagogical University Bulletin, 11(89), pp. 198-206. (in Russian).

13. Glagolev M., Sabrekov A. and Kazantsev V. (2010b). Physicochemistry and biology. Methods of gas exchange measurements at soil – atmosphere border. Tomsk: TGPU. (in Russian).

14. Golubyatnikov L. and Kazantsev V. (2013). Contribution of tundra lakes in Western Siberia to the atmosphere methane budget. Izvestiya, Atmospheric and Oceanic Physics, (49)4, pp. 395- 403, DOI: 10.1134/S000143381304004X.

15. Golubyatnikov L., Zarov E., Kazantsev V., Filippov I. and Gavrilov G. (2015). Analysis of landscape structure in the tundra zone for Western Siberia based on satellite data Izvestiya. Atmospheric and Oceanic Physics, 51(9), pp. 969-978.

16. GOST R ISO 16269-7-2004 (2004). Statistical interpretation of data — Part 7: Median — Estimation and confidence intervals (IDT). Moscow: Izdatel’stvo standartov. (in Russian).

17. Gvozdetskiy N., Krivolutskiy A. and Makunina A. (1973). Scheme of physico-geographical regionalization of the Tyumen region. In N.A. Gvozdetskiy, ed., Fiziko-geograficheskoye rayonirovaniye Tyumenskoy oblasti, 1st ed. Moscow: MGU, pp. 9-27. (in Russian).

18. IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1535 p.

19. Juutinen S., Alm J., Larmola T., Saarnio S., Martikainen P. and Silvola J. (2004). Stand-specific diurnal dynamics of CH4 fluxes in boreal lakes: Patterns and controls. Journal of Geophysical Research: Atmospheres, 109, DOI: 10.1029/2004JD004782.

20. Kirschke S., Bousquet P., Ciais P., Saunois M., Canadell J., Dlugokencky E., et al. (2013). Three decades of global methane sources and sinks. Nature Geoscience, 6(10), pp. 813-823. DOI: 10.1038/ngeo1955.

21. Kravtsova V. and Bystrova A. (2009). Changes in thermokarst lake size in different regions of Russia for the last 30 years. Earth’s Cryosphere, 13(2), pp. 16-26. (in Russian).

22. Krivenok L, Glagolev M., Fastovets I., Smolentsev B. and Maksyutov S. (2014). Methane fluxes from south tundra ecosystems of West Siberia. Environmental Dynamics and Global Climate Change, 5(1), pp. 26-42. (in Russian).

23. Liss O., Abramova L., Avetov N., Berezina N., Inisheva L., Kurnishkova T., Sluka Z., Tolpysheva T. and Shvedchikova N. (2001). Wetland systems of Western Siberia and their environmental significance. Tula: Grif i Ko. (in Russian).

24., (2018). Google maps. [online] Available at: [Accessed 01 Jan. 2018].

25. O’Connor F., Boucher O., Gedney N., Jones C., Folberth G., Coppell R., Friedlingstein P., Collins W., Chappellazm J., Ridley J. and Johnson, C. (2010). Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. Reviews of Geophysics, 48(4). DOI: 10.1029/2010RG000326.

26., (2018). OpenStreetMap. [online] Available at: [Accessed 01 Jan. 2018].

27. Panikov N. (1995). Taiga wetlands – global source of atmospheric methane. Priroda, 6, pp. 14-25. (in Russian).

28. Pavlov A. and Malkova G. (2009). Small-scale mapping of trends of the contemporary ground temperature changes in the russian north. Earth’s Сryosphere, 13(4), pp. 32-39 (in Russian).

29. Repo M., Huttunen J., Naumov A., Chichulin A., Lapshina E., Bleuten W. and Martikainen P. (2007). Release of CO2 and CH4 from small wetland lakes in western Siberia. Tellus B, 59(5), pp. 788-796. DOI: 10.1111/j.1600-0889.2007.00301.x.

30., (2017). RP5 Official Website. [online] Available at: [Accessed 27 Oct. 2017].

31. Rumshiskyi L. (1971). Mathematical processing of experiment results. Moscow: Nauka. (in Russian).

32. Sabrekov A., Glagolev M., Kleptsova I. and Maksyutov S. (2011). CH4 emission from West Siberia tundra mires. Environmental Dynamics and Global Climate Change, 2(1). (in Russian).

33. Sabrekov A., Glagolev M., Kleptsova I., Machida T. and Maksyutov S. (2013). Methane emission from mires of the West Siberian taiga. Eurasian soil science, 46(12), pp. 1182-1193.

34. Sabrekov A., Runkle B., Glagolev M., Terentieva I., Stepanenko V., Kotsyurbenko O., Maksyutov S. and Pokrovsky O. (2017). Variability in methane emissions from West Siberia’s shallow boreal lakes on a regional scale and its environmental controls. Biogeosciences, 14(15), pp. 3715- 3742.

35. Schulz S., Matsuyama H. and Conrad R. (1997). Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). FEMS Microbiology Ecology, 22(3), pp. 207–213. DOI: 10.1111/j.1574-6941.1997.tb00372.x.

36. Shvareva Yu. (1963). Klimat [Climate]. In G.D. Rihter and V.I. Orlov, ed., Zapadnaya Sibir. Moscow: Izdatel’stvo AN SSSR, pp. 70-99. (in Russian).

37. Smagin A., Glagolev M., Suvorov G. and Shnyrev N. (2003). Methods for studying gas fluxes and the composition of soil air in field conditions using a portable PGA-7 gas analyzer. Moscow University Soil Science Bulletin, 58(3), pp. 26-35.

38. Soloviev P. (1959). Permafrost of northern part of Lena-Amga interfluve area. Moscow: Izdatel’stvo AN SSSR. (in Russian).

39. Suvorov G. and Glagolev M. (2007). The duration of «active methane emission period». Bolota i biosfera: Sbornik materialov Shestoi Nauchnoi Shkoli (10-14 sentyabrya 2007 g.). pp. 270-274 (in Russian).

40. Taylor D. (1985). Introduction to error theory. Moscow: Mir. (in Russian).

41. Theil H. (1971). Economic forecasts and policy. Moscow: Statistica. (in Russian).

42. Vapnik V., Glazkova T., Koshcheev V., Mikhal’skiy A. and Chervonenkis A. (1984). Algorithms and programs for dependencies lifting. Moscow: Nauka. (in Russian).

43. Vasilevskaya V., Ivanov V. and Bogatirev L. (1986). Soils of Western Siberia north. Moscow: Izdatel’sto MGU. (in Russian).

For citation:


Views: 207

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)