Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Land suitability of coffee cultivation under climate change influence in the Ecuadorian Amazon

https://doi.org/10.24057/2071-9388-2024-2969

Abstract

In this study, the influence of climate change on land suitability for coffee cultivation in the Ecuadorian Amazon (EA) was investigated using five global circulation models (GCMs) in two different socioeconomic pathways (SSP126 and SSP585). Eleven physioedaphological factors were selected for the analysis and were combined with the most influential bioclimatic variables to model past, present and future suitable areas in five provinces of the EA. In assessing past suitability areas, key determinants varied based on land suitability levels. High suitability areas were primarily influenced by factors such as texture, organic matter content, soil fertility, soil depth, slope, and aspect, while pH, salinity, toxicity, drainage, and stoniness were more associated with moderate suitability areas. The present high suitability areas were influenced by texture, organic matter content, soil fertility, soil depth, and slope, whereas aspect, pH, salinity, toxicity, drainage, and stoniness were more prominent in modeling moderate areas. The ensemble estimation model projected distinct future scenarios for coffee cultivation; under the worst climate scenario (SSP585), Zamora Chinchipe and Morona Santiago, particularly in the east, face considerable unsuitability. Conversely, the more favorable scenario (SSP126) indicates high suitability across Pastaza, Orellana, and Sucumbios, with limited suitability in border areas adjacent to the Highland region. This study highlights the importance of implementing timely adaptation strategies to improve resilience to climate change impacts in the coffee sector.

About the Authors

Marco O. V. Montero
Universidad de Antioquia – Facultad de Ciencias Agrarias
Colombia

No 50E-31, 0601060 Medellín 



Aurora A. Ariza
Escuela Superior Politécnica de Chimborazo (ESPOCH), Facultad de Agronomía, Fray Gaspar de Carvajal, Orellana and Riobamba campus
Ecuador

EC060155 – Orellana 



Nancy M. Barreno
Escuela Superior Politécnica de Chimborazo (ESPOCH), Facultad de Agronomía, Fray Gaspar de Carvajal, Orellana and Riobamba campus
Ecuador

EC060155 – Orellana 



Hilter F. Figueroa-Saavedra
Escuela Superior Politécnica de Chimborazo (ESPOCH), Facultad de Agronomía, Fray Gaspar de Carvajal, Orellana and Riobamba campus
Ecuador

EC060155 – Orellana 



Andrea F. Porras
Instituto Superior Tecnológico Martha Bucarám de Roldós
Ecuador

vía Aeropuerto, 170707, Nueva Loja, Lago Agrio 



Yul Aguilar
Instituto Superior Tecnológico Martha Bucarám de Roldós
Ecuador

vía Aeropuerto, 170707, Nueva Loja, Lago Agrio 



Wladimir Moya
Universidad de Los Lagos, Departamento de Ciencias Biológicas, Laboratorio de Ecología
Chile

5290000 Osorno 



References

1. Akpoti K. Kabo-bah A.T. and Zwart S.J. (2019). Review - Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agricultural Systems, 173, 172-208, DOI: 10.1016/j.agsy.2019.02.013

2. Ayehu G. and Atnafu S. (2015). Land Suitability Analysis for Rice Production: A GIS Based Multi-Criteria Decision Approach. American Journal of Geographic Information System, 4(3), 95-104, DOI: 10.5923/j.ajgis.20150403.02

3. Barrios E. Valencia V. Jonsson M. Brauman A. Hairiah K. Mortimer P.E. and Okubo S. (2018). Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. International Journal of Biodiversity Science, Ecosystem Services & Management, 14(1), 1-16, DOI: 10.1080/21513732.2017.1399167

4. Beltrán-Tolosa L.M. Cruz-Garcia G.S. Ocampo J. Pradhan P. and Quintero M. (2022). Rural livelihood diversification is associated with lower vulnerability to climate change in the Andean-Amazon foothills. PLOS Climate, 1(11), e0000051. DOI: 10.1371/journal.pclm.0000051

5. Benti F. Diga G.M. Feyisa G.L. and Tolesa A.R. (2022). Modeling coffee (Coffea arabica L.) climate suitability under current and future scenario in Jimma zone, Ethiopia. Environmental Monitoring and Assessment, 194(4), 271. DOI: 10.1007/s10661-022-09895-9

6. Bunn C. Läderach P. Rivera O.O. and Kirschke D. (2015). A bitter cup: Climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129(1), 89-101. DOI: 10.1007/s10584-014-1306-x

7. Cabrera-Barona P.F. Bayón M. Durán G. Bonilla A. and Mejía V. (2020). Generating and Mapping Amazonian Urban Regions Using a Geospatial Approach. ISPRS International Journal of Geographic Information, 9(7), 453. DOI: 10.3390/ijgi9070453

8. Cassamo C.T. Draper D. Romeiras M.M. Marques I. Chiulele R. Rodrigues M. Stalmans M. Partelli F.L. Ribeiro-Barros A. and Ramalho J.C. (2023). Impact of climate changes in the suitable areas for Coffea arabica L. production in Mozambique: Agroforestry as an alternative management system to strengthen crop sustainability. Agriculture, Ecosystems & Environment, 346, 108341. DOI: 10.1016/j.agee.2022.108341

9. Castro-Tanzi S. Dietsch T. Urena N. Vindas L. and Chandler M. (2012). Analysis of management and site factors to improve the sustainability of smallholder coffee production in Tarrazú, Costa Rica. Agriculture, Ecosystems & Environment, 155, 172-181. DOI: 10.1016/j.agee.2012.04.013

10. Chavez E. Wade J. Miernicki E.A. Torres M. Stanek E.C. Subía C. Caicedo C. Tinoco L. and Margenot A.J. (2021). Apparent nitrogen limitation of Robusta coffee yields in young agroforestry systems. Agronomy Journal, 113(6), 5398-5411. DOI: 10.1002/agj2.20725

11. Chemura A. Mudereri B.T. Yalew A.W. and Gornott C. (2021). Climate change and specialty coffee potential in Ethiopia. Scientific Reports, 11(1), 8097. DOI: 10.1038/s41598-021-87647-4

12. DaMatta F.M. Rahn E. Läderach P. Ghini R. and Ramalho J.C. (2019). Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? Climatic Change, 152(1), 167-178. DOI: 10.1007/s10584-018-2346-4

13. De Beenhouwer M. Aerts R. and Honnay O. (2013). A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agriculture, Ecosystems & Environment, 175, 1-7. DOI: 10.1016/j.agee.2013.05.003

14. D’haeze D. Deckers J. Raes D. Phong T.A. and Loi H.V. (2005). Environmental and socio-economic impacts of institutional reforms on the agricultural sector of Vietnam: Land suitability assessment for Robusta coffee in the Dak Gan region. Agriculture, Ecosystems & Environment, 105(1), 59-76. DOI: 10.1016/j.agee.2004.05.009

15. de Sousa K. van Zonneveld M. Holmgren M. Kindt R. and Ordoñez J.C. (2019). The future of coffee and cocoa agroforestry in a warmer Mesoamerica. Scientific Report, 9(1), 8828. DOI: 10.1038/s41598-019-45491-7

16. dos Santos H.D. and Boffo E.F. 2021. Coffee beyond the cup: Analytical techniques used in chemical composition research—a review. European Food Research and Technology, 247(4), 749-775. DOI: 10.1007/s00217-020-03679-6

17. Espinoza J.L. Jara-Alvear J. and Urdiales L. (2018). Sustainability of Renewable Energy Projects in the Amazonian Region. In: M.E. Tyler, ed., Sustainable Energy Mix in Fragile Environments: Frameworks and Perspectives, 1st ed. Springer International Publishing., 107-139, DOI: 10.1007/978-3-319-69399-6_7

18. Ferretti V. and Pomarico S. (2013). Ecological land suitability analysis through spatial indicators: An application of the Analytic Network Process technique and Ordered Weighted Average approach. Ecological Indicators, 34, 507-519. DOI: 10.1016/j.ecolind.2013.06.005

19. Fick S.E. and Hijmans R.J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. DOI:10.1002/joc.5086

20. Gomes L.C. Bianchi F. Cardoso I.M. Fernandes R.B. Filho E.I. and Schulte R.P. (2020). Agroforestry systems can mitigate the impacts of climate change on coffee production: A spatially explicit assessment in Brazil. Agriculture Ecosystem and Environment, 294, 106858. DOI: 10.1016/j.agee.2020.106858

21. Haggar J. Medina B. Aguilar R.M. and Munoz C. (2013). Land Use Change on Coffee Farms in Southern Guatemala and its Environmental Consequences. Environmental Management, 51(4), 811-823. DOI: 10.1007/s00267-013-0019-7

22. Hameed A. Hussain S.A. and Suleria H.A. (2020). «Coffee Bean-Related» Agroecological Factors Affecting the Coffee. In: J. Mérillon and K. Ramawat, eds., Co-Evolution of Secondary Metabolites, 1st ed. Springer International Publishing., 641-705, DOI: 10.1007/978-3-319-96397-6_21

23. Hijmans R.J. Cameron S.E. Parra J.L. Jones P.G. and Jarvis A. (2005). Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965-1978. DOI: 10.1002/joc.1276

24. Jarrett C. Cummins I. and Logan-Hines E. (2017). Adapting Indigenous Agroforestry Systems for Integrative Landscape Management and Sustainable Supply Chain Development in Napo, Ecuador. In: F. Montagnini, ed., Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty, 2nd ed. Springer International Publishing., 283-309, DOI: 10.1007/978-3-319-69371-2_12

25. Jawo T.O. Kyereh D. and Lojka B. (2022). The impact of climate change on coffee production of small farmers and their adaptation strategies: A review. Climate and Development, 0(0), 1-17. DOI: 10.1080/17565529.2022.2057906

26. Khalil T. Asad S.A. Khubaib N. Baig A. Atif S. Umar, M. et al. (2021). Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent. AIMS Agriculture and Food. 6(2), 663-676. DOI: 10.3934/agrfood.2021039

27. Koh I. Garrett R. Janetos A. and Mueller N.D. (2020). Climate risks to Brazilian coffee production. Environmental Research Letters, 15(10), 104015. DOI: 10.1088/1748-9326/aba471

28. Läderach P. Ramirez–Villegas J. Navarro-Racines C. Zelaya C. Martinez–Valle A. Jarvis A. (2017). Climate change adaptation of coffee production in space and time. Climatic Change, 141(1), 47-62. DOI: 10.1007/s10584-016-1788-9

29. Lemma D. and Megersa H. (2021). Impact of Climate Change on East African Coffee Production and Its Mitigation Strategies. World Journal of Agricultural Sciences, 17(2), 81-89. DOI: 10.5829/idosi.wjas.2021.81.89

30. Monteverde C. De Sales F. and Jones C. (2022). Evaluation of the CMIP6 Performance in Simulating Precipitation in the Amazon River Basin. Climate, 10(8), 122. DOI: 10.3390/cli10080122

31. Moya W. Jacome G. and Yoo C. (2017). Past, current, and future trends of red spiny lobster based on PCA with MaxEnt model in Galapagos Islands, Ecuador. Ecology and Evolution, 7(13), 4881-4890. DOI: 10.1002/ece3.3054

32. Navidad D.L. Marceleño S.M.L. Nájera A. Nájera O. and Ramírez J.P. (2023). Effects of Land Cover and Land Use Change on Nature’s Contributions to People of the Shade-Grown Coffee Agroecosystem: An Analysis of Cumbres de Huicicila, Nayarit, Mexico. Conservation, 3(3), 426-443. DOI: 10.3390/conservation3030029

33. Olmo M.E. Espinoza J.C. Bettolli M.L. Sierra J.P. Junquas C. Arias P.A. Moron V. and Balmaceda-Huarte R. (2022). Circulation Patterns and Associated Rainfall Over South Tropical South America: GCMs Evaluation During the Dry-To-Wet Transition Season. Journal of Geophysical Research: Atmospheres, 127(12), e2022JD036468. DOI: 10.1029/2022JD036468

34. Parker, W.S. (2013). Ensemble modeling, uncertainty and robust predictions. WIREs Climate Change, 4(3), 213-223. DOI: 10.1002/wcc.220

35. Pham Y. Reardon-Smith K. Mushtaq S. and Cockfield G. (2019). The impact of climate change and variability on coffee production: A systematic review. Climatic Change, 156(4), 609-630. DOI: 10.1007/s10584-019-02538-y

36. Rahn E. Läderach P. Baca M. Cressy C. Schroth G. Malin D. van Rikxoort H. and Shriver J. (2014). Climate change adaptation, mitigation and livelihood benefits in coffee production: Where are the synergies? Mitigation and Adaptation Strategies for Global Change, 19(8), 1119-1137. DOI: 10.1007/s11027-013-9467-x

37. Rahn E. Vaast P. Läderach P. van Asten P. Jassogne L. and Ghazoul J. (2018). Exploring adaptation strategies of coffee production to climate change using a process-based model. Ecological Modelling, 371, 76-89. DOI: 10.1016/j.ecolmodel.2018.01.009

38. Ranjitkar S. Sujakhu N.M. Merz J. Kindt R. Xu J. Matin M.A. Ali M. and Zomer R.J. (2016). Suitability Analysis and Projected Climate Change Impact on Banana and Coffee Production Zones in Nepal. PLOS ONE, 11(9), e0163916. DOI: 10.1371/journal.pone.0163916

39. Reboita M.S. Kuki C.A.C. Marrafon V.H. de Souza C.A. Ferreira G.W.S. Teodoro T. and Lima J.W.M. (2022). South America climate change revealed through climate indices projected by GCMs and Eta-RCM ensembles. Climate Dynamics, 58(1), 459-485. DOI: 10.1007/s00382-021-05918-2

40. Salas R. Gómez D. Silva J.O. Rojas N.B. Oliva M. Terrones R.E. Iliquín D. Barboza E. and Barrena M.Á. (2020). Land Suitability for Coffee (Coffea arabica) Growing in Amazonas, Peru: Integrated Use of AHP, GIS and RS. ISPRS International Journal of Geo-Information, 9(11), 673. DOI: 10.3390/ijgi9110673

41. Sarvina Y. June T. Sutjahjo S.H. Nurmalina R. and Surmaini E. (2022). Climatic Suitability for Robusta Coffee in West Lampung Under Climate Change. IOP Conference Series: Earth and Environmental Science, 950(1), 012019. DOI: 10.1088/1755-1315/950/1/012019

42. Sebatta C. Mugisha J. Bagamba F. Nuppenau E.A. Domptail S.E. Kowalski B. et al. (2019). Pathways to sustainable intensification of the coffee-banana agroecosystems in the Mt. Elgon region. Cogent Food & Agriculture, 5(1), 1611051. DOI: 10.1080/23311932.2019.1611051

43. Shortridge J.E. and Zaitchik B.F. (2018). Characterizing climate change risks by linking robust decision frameworks and uncertain probabilistic projections. Climatic Change, 151(3), 525-539. DOI:10.1007/s10584-018-2324-x

44. Tavares P. da S. Giarolla A. Chou S.C. Silva A.J. de P. and Lyra A. de A. (2018). Climate change impact on the potential yield of Arabica coffee in southeast Brazil. Regional Environmental Change, 18(3), 873-883. DOI: 10.1007/s10113-017-1236-z

45. Verbist B. Dinata A.E. and Budidarsono S. (2005). Factors driving land use change: Effects on watershed functions in a coffee agroforestry system in Lampung, Sumatra. Agricultural Systems, 85(3), 254-270. DOI: 10.1016/j.agsy.2005.06.010

46. Wu Y. Miao C. Sun Y. AghaKouchak A. Shen C. and Fan X. (2021). Global Observations and CMIP6 Simulations of Compound Extremes of Monthly Temperature and Precipitation. GeoHealth. 5(5), e2021GH000390. DOI: 10.1029/2021GH000390

47. Zambrano-Flores F.G. Loor-Solorzano R.G. Plaza-Avellán L.F. Jaimez-Arellano R. E. Guerrero-Castillo H.E. Casanova-Mendoza T.D. et al. (2018). Relationship between productivity and integral bean quality in advanced selections of Robusta coffee (Coffea canephora) in Ecuador. Agrociencia, 52(4), 593-607.

48. Zhang S. Liu X. Wang X. Gao Y. and Yang Q. (2021). Evaluation of coffee ecological adaptability using Fuzzy, AHP, and GIS in Yunnan Province, China. Arabian Journal of Geosciences, 14(14), 1366. DOI: 10.1007/s12517-021-07795-9

49. Zumwald M. Knüsel B. Baumberger C. Hirsch G. Bresch D.N. and Knutti R. (2020). Understanding and assessing uncertainty of observational climate datasets for model evaluation using ensembles. WIREs Climate Change, 11(5), e654. DOI:10.1002/wcc.654


Review

For citations:


Montero M., Ariza A., Barreno N., Figueroa-Saavedra H., Porras A.F., Aguilar Yu., Moya W. Land suitability of coffee cultivation under climate change influence in the Ecuadorian Amazon. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2024;17(2):49-62. https://doi.org/10.24057/2071-9388-2024-2969

Views: 929


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)