Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Inaccuracy of relative elevations on uavbased digital elevation models without precise reference information

https://doi.org/10.24057/2071-9388-2024-3123

Abstract

Imagery obtained from unmanned aerial vehicle (UAV) is widely used for land surface modelling. Recent research prove that digital elevation models (DEMs) created from UAV imagery are characterized by a high rate of accuracy and reliability. Most of these studies are focused on assessing absolute elevation accuracy of the UAV DEMs, but the accuracy of relative elevations (i.e., accuracy of reproducing of local elevation differences within DEM) also should be considered. In this paper, we focus on the precision of replicating relative elevations in DEMs derived from imagery captured via UAVs without precise coordinate reference. To evaluate this accuracy, we use datasets of aerial images processed in two different methods: one with on-board coordinates obtained from a GNSS receiver, and the other based on precise coordinates calculated with the Post-Processing Kinematic (PPK) method. The sites selected for assessment are not look like each other in terms of terrain and forest cover characteristics to track the difference of modelling in the divergent areas. Constructed DEMs were compared with reference fragments of global DEMs by the statistical indices for the difference fields. The findings indicate that the absence of an accurate coordinate reference does not have a substantial impact on the precision of reproducing relative elevations in the DEM. This makes it possible to use UAV materials without precise coordinate reference for modelling in most geographical studies, where the error of terrain steepness values of 0.9° can be considered acceptable.

About the Authors

Victoria V. Zorina
Department of Cartography and Geoinformatics, Faculty of Geography, Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1, Moscow 119991 



Andrey L. Entin
Department of Cartography and Geoinformatics, Faculty of Geography, Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1, Moscow 119991 



References

1. ALOS Global Digital Surface Model (DSM) Product Description. (2019) Earth Observation Research Center, Japan Aerospace Exploration Agency

2. ASF engineering. (2015). ASF Radiometrically Terrain Corrected ALOS PALSAR products. Product guide

3. ASTER Global DEM Validation Summary Report. (2009). ASTER GDEM Validation Team: METI/ERSDAC, NASA/LPDAAC, USGS/EROS. In cooperation with NGA and Other Collaborators

4. Barba S., Barbarella M., Di Benedetto A., Fiani M., Gujski L. and Limongiello M. (2019). Accuracy Assessment of 3D Photogrammetric Models from an Unmanned Aerial Vehicle. Drones, 3(4), 79. DOI: 10.3390/drones3040079

5. Benassi F., Dall’Asta E., Diotri F., Forlani G., Morra di Cella U., Roncella R. and Santise M. (2017). Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation. Remote Sensing, 9(2), 172. DOI: 10.3390/rs9020172

6. Biljecki F., Ledoux H. and Stoter J. (2016). Generation of multi-LOD 3D city models in CityGML with the procedural modelling engine Random3Dcity. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-4/W1, 51–59. DOI: 10.5194/isprs-annalsIV-4-W1-51-2016

7. Deev E., Borodovskiy A. and Entin A. (2023). Earthquake-induced deformation at archaeological sites in southeastern Gorny Altai (Siberia, Russia). Archaeological Research in Asia, 34, 100431. DOI: 10.1016/j.ara.2023.100431

8. Eisenbeiss H. (2009). UAV photogrammetry, 1 Band [ETH Zurich; Application/pdf ]. DOI: 10.3929/ETHZ-A-005939264

9. Famiglietti N.A., Cecere G., Grasso C., Memmolo A. and Vicari A. (2021). A Test on the Potential of a Low Cost Unmanned Aerial Vehicle RTK/PPK Solution for Precision Positioning. Sensors, 21(11), 3882. DOI: 10.3390/s21113882

10. Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D. and Alsdorf D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2), RG2004. DOI: 10.1029/2005RG000183

11. Ferreira Z. and Cabral P. (2021). Vertical Accuracy Assessment of ALOS PALSAR, GMTED2010, SRTM and Topodata Digital Elevation Models: Proceedings of the 7th International Conference on Geographical Information Systems Theory, Applications and Management, 116–124. DOI: 10.5220/0010404001160124

12. Fujisada H., Urai M. and Iwasaki A. (2012). Technical Methodology for ASTER Global DEM. IEEE Transactions on Geoscience and Remote Sensing, 50(10), 3725–3736. DOI: 10.1109/TGRS.2012.2187300

13. Geoscan Gemini Manual. (2023).

14. Guan S., Zhu Z. and Wang G. (2022). A Review on UAV-Based Remote Sensing Technologies for Construction and Civil Applications. Drones, 6(5), 117. DOI: 10.3390/drones6050117

15. Hawker L., Uhe P., Paulo L., Sosa J., Savage J., Sampson C. and Neal J. (2022). A 30 m global map of elevation with forests and buildings removed. Environmental Research Letters, 17(2), 024016. DOI: 10.1088/1748-9326/ac4d4f

16. Ihsan H.M. (2021). Vertical accuracy assessment on Sentinel-1, ALOS PALSAR, and DEMNAS in the Ciater Basin. Jurnal Geografi Gea, 21 (1), 16-25.

17. Kaplan E.D., Hegarty J. (2017) Understanding GPS: principles and applications, 2nd edn. Artech House, London

18. Karlson M., Bastviken D., Reese H. (2021) Error Characteristics of Pan-Arctic Digital Elevation Models and Elevation Derivatives in Northern Sweden. Remote Sens, 13, 4653. DOI: 10.3390/rs13224653

19. Liu X., Lian X., Yang W., Wang F., Han Y. and Zhang Y. (2022). Accuracy Assessment of a UAV Direct Georeferencing Method and Impact of the Configuration of Ground Control Points. Drones, 6(2), 30. DOI: 10.3390/drones6020030

20. Meadows M., Jones S., Reinke K. (2024) Vertical accuracy assessment of freely available global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in flood-prone environments, International Journal of Digital Earth, 17(1), DOI: 10.1080/17538947.2024.2308734

21. Mohamad N., Ahmad A. and Md Din A.H. (2022). A review of UAV photogrammetry application in assessing surface elevation changes. Journal of Information System and Technology Management, 7(25), 195–204. DOI: 10.35631/JISTM.725016

22. Neitzel F. and Klonowski J. (2012). Mobile 3D mapping with a low-cost UAV system. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22, 39–44. DOI: 10.5194/isprsarchives-XXXVIII-1-C22-39-2011

23. Ngula Niipele J. and Chen J. (2019). The usefulness of alos-palsar dem data for drainage extraction in semi-arid environments in The Iishana sub-basin. Journal of Hydrology: Regional Studies, 21, 57–67. DOI: 10.1016/j.ejrh.2018.11.003

24. Noh M.-J. and Howat I.M. (2017). The Surface Extraction from TIN based Search-space Minimization (SETSM) algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 129, 55–76. DOI: 10.1016/j.isprsjprs.2017.04.019

25. Padró J.-C., Muñoz F.-J., Planas J. and Pons X. (2019). Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms. International Journal of Applied Earth Observation and Geoinformation, 75, 130–140. DOI: 10.1016/j.jag.2018.10.018

26. Porter C. (2018). 2m Topography and Surface Change Detection over the Arctic. Blue waters symposium

27. Saberi, A., Kabolizadeh, M., Rangzan, K. & Abrehdary, M. (2023). Accuracy assessment and improvement of SRTM, ASTER, FABDEM, and MERIT DEMs by polynomial and optimization algorithm: A case study (Khuzestan Province, Iran). Open Geosciences, 15(1), 20220455. DOI: 10.1515/geo-2022-0455

28. Siemonsma D. (2015). The Shuttle Radar Topography Mission (SRTM) Collection User Guide.

29. Suchilin A., Belaya N., Voskresensky I., Mikheeva S., Zorina V., Ushakova L., Shaforostov V. and Sokratov S. (2021). Methods for studying the morphology of abrasion-accumulative coast of the West coast of the Crimea using UAV and GNSS (on the example of a land of the territory of Great Sevastopol). InterCarto. InterGIS, 27(1), 351–363. DOI: 10.35595/2414-9179-2021-1-27-351-363

30. Svistunov M.I., Kurbanov R.N., Murray A.S., Taratunina N.A., Semikolennykh D.V., Entin A.L., Deev Ye.V., Zolnikov I.D. and Panin A.V. (2022). Constraining the age of Quaternary megafloods in the Altai Mountains (Russia) using luminescence. Quaternary Geochronology, 73, 101399. DOI: 10.1016/j.quageo.2022.101399

31. Szypuła B. (2023). Accuracy of UAV-based DEMs without ground control points. GeoInformatica. DOI: 10.1007/s10707-023-00498-1

32. Takaku J., Tadono T. and Tsutsui K. (2014). Generation of High-Resolution Global DSM from ALOS PRISM. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL–4, 243–248. DOI: 10.5194/isprsarchives-XL-4-243-2014

33. Tomaštík J., Mokroš M., Surový P., Grznárová A. and Merganič J. (2019). UAV RTK/PPK Method—An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sensing, 11(6), 721. DOI: 10.3390/rs11060721

34. Topcon HiPer V – user manual. (2012Copyright Topcon Positioning Systems, Inc

35. Uuemaa E., Ahi S., Montibeller B., Muru M., Kmoch A. (2020) Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens., 12, 3482. DOI: 10.3390/rs12213482

36. Uysal M., Toprak A.S. and Polat N. (2015). DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement, 73, 539–543. DOI: 10.1016/j.measurement.2015.06.010


Review

For citations:


Zorina V.V., Entin A.L. Inaccuracy of relative elevations on uavbased digital elevation models without precise reference information. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2024;17(2):26-35. https://doi.org/10.24057/2071-9388-2024-3123

Views: 514


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)