Advanced search


Full Text:


The paper presents preliminary results and interpretation from an ongoing research project in the Novy Afon and Abrskil caves of Abkhazia. The research have demonstrated that δ18O and δD analyses of drip and ground waters in two caves in the South-Western Caucasian region allows to better understand interaction between isotopic composition of precipitation, soil, and vadose zone. Drip and ground water samples from the caves were compared with the present-day Global (GMWL) and the Local Meteoric Water Lines (LMWL). They fall along the GMWL and LMWL and are tied by equation δD = 5.74δ18O - 6.98 (r2 = 0.94). Drip water isotopic composition is similar to that from lakes and pools. The incline of δ18O - δD line differs from GMWL and LMWL. It reflects a possible result from secondary condensation and evaporation and water-rock interaction, and depends on the climate aridity level.

About the Authors

Vladimir Mikhalenko
Institute of Geography, Russian Academy of Sciences, Russia
Russian Federation

Anna Kozachek
Arctic and Antarctic Research Institute, Russia
Russian Federation

Janvarbi A. Ekba
Institute of Ecology, Abkhazian Academy of Sciences
Russian Federation


1. Affolter S., Fleitmann D., and Leuenberger M. (2014). New online method for water isotope analysis of speleothem fluid inclusions laser absorption spectroscopy (WS-CRDS). Climate of the Past 10: 1291-1304. doi: 10.5194/cp-10-1291-2014

2. Bar-Matthews M., Ayalon A., Matthews A., Sass E., and Halicz L. (1996). Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: implications for paleoclimate research in semiarid regions. Geochimica et Cosmochimica Acta 60: 337-347. doi:10.1016/0016-7037(95)00395-9

3. Barnes C.J., Allison G.B. (1988). Tracing of water movement in the unsaturated zone using stable isotope of hydrogen and oxygen. J of Hydrology 100: 143-176. doi:10.1016/0022-1694(88)90184-9

4. Boop L.M., Onac B.P., Wynn J.G., Fornós J.J., Rodríguez-Homar M., and Merino A. (2014) Groundwater geochemistry observations in littoral caves of Mallorca (western Mediterranean): implications for deposition of phreatic overgrowths on speleothems. International J of Speleology 43 (2): 193-203. doi:10.5038/1827-806x.43.2.7

5. Bradley C., Baker A., Jex C.N., and Leng M.J. (2010). Hydrological uncertainties in the modelling of cave drip-water δ18O and the implications for stalagmite palaeoclimate reconstructions. Quaternary Science Reviews 29: 2201-2214. doi:10.1016/j.quascirev.2010.05.017

6. Couthbert M.O., Baker A., Jex C.N., Graham P.W., Treble P.C., Andersen M.S., and Acworth R.I. (2014). Drip water isotopes in semi-arid karst: implications for speleothems paleoclimatology. Earth and Planetary Science Letters 395: 194-204. doi:10.1016/j.epsl.2014.03.034

7. Craig H. (1961) Isotopic variations in meteoric waters. Science 133: 1702-1703. doi: 10.1126/science.133.3465.1702

8. Dolgova E.A., Matskovskiy V.V., Solomina O.N., Rototaeva O.V., Nosenko G.A., and Khmelevskoy I.F. (2013). Rekonstruktsia balansa massy lednika Garabashi (1800-2005) po dendrokhronologicheskim dannym [Reconstructing mass balance of Garabashi Glacier (1800-2005) using dendrochronological data]. Led I Sneg [Ice and Snow] 1: 34-42 (in Russian with English summary)

9. Ekba J.A., Dbar R.S. (2007). Ekologicheskaya klimatologiya i prirodnnie landshafty Abkhazii [Ecological climatology and natural landscapes of Abkhazia]. Sochi, Papyrus-M-Design (in Russian with English summary)

10. Fairchild I.J., Smith C.L., Baker A., Fuller L., Spötl C., Mattey D., McDermott F., E.I.M.F. (2006) Modification and preservation of environmental signals in speleothems. Earth-Science Review 75: 105-153. doi:10.1016/j.earscirev.2005.08.003

11. Ferronsky V.I. (2015). Stable Isotopes in Study of the Global Hydrological Cycle. In: Nuclear Geophysics. Applications in Hydrology, Hydrogeology, Engineering Geology, Agriculture and Environmental Science. Part III. Springer Geophysics: 227-322. doi: 10.1007/978-3-319-12451-3_9

12. Gonfiantini R., Dinçer T., and Derekoy A.M. (1974). Environmental isotope hydrology in the Bodna region, Algeria. Isotope Techniques in Groundwater Hydrology. Proc. Symp. IAEA 1: 293-316

13. Luo W., Wang S. and Xie X. (2013). A comparative study on the stable isotopes from precipitation to speleothems if four caves of Guozhou, China. Cheme der Erde 73: 205-215. doi: 10.1016/j.chemer.2012.05.002

14. Kutuzov S.S., Mikhalenko V.N., Shahgedanova M., Ginot P., Kozachek A.V., Lavrentiev I.I, Kuderina T.M., and Popov G.V. (2014). Puti delnego perenosa pyli na ledniki Kavkaza i khimicheskiy sostav snega nf Zapadnom plato Elbrusa [Ways and far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus]. Led i Sneg [Ice and Snow] 3 (127): 5-15 (in Russian with English summary)

15. McDermott F. (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews 23: 901-918. doi:10.1016/j.quascirev.2003.06.021

16. McGarry S., Bar-Matthews M., Matthews A., Vaks A., and Ayalon A. (2004). Constraints on hydrological and paleotemperature variations in the eastern Mediterranean region in the last 140 ka given by the δD values of speleothem fluid inclusions. Quaternary Science Reviews 23: 919-934. doi:10.1016/j.quascirev.2003.06.020

17. Petrella E., Celico F. (2013). Mixing of water in a carbonate aquifer, southern Italy, analyzed through stable isotope investigations. International J of Speleology 42 (1): 25-33. doi:10.5038/1827-806x.42.1.4

18. Solomina, O.N., Dolgova, E.A., and Maximova, O.E. (2012). Rekonstruktsii gidrometeorologicheskikh usloviy v Krymu, na Kavkaze i Tian Shane po dendrokhronologicheskim dannim [Tree-ring based hydrometeorological reconstructions in Crimea, Caucasus and Tien-Shan]. Moscow, St. Petersburg, Nestor History (in Russian with English summary)

19. Solomina O.N., Kalugin I.A., Darin A.V., Chepurnaya A.A., Alexandrin M.Y., Kuderina T.M. (2014). Ispolzovanie geokhimicheskogo i pyltzevogo analizov otlozheniy ozera Karakyol dlya rekonstruktsii klimaticheskikh izmeneniy v doline r. Teberda (Severniy Kavkaz) v pozdnem golotsene: vozmozhnosti i ogranicheniya [The implementation of geochemical and palynological analyses of the sediment core of Karakyol for reconstructions of climatic changes in the valley of Teberda river (Northern Caucasus) during the Late Holocene: possibilities and limitations]. Voprosy Geographii, 137: 234-266 (in Russian with English summary)

20. Tintilozov Z.K. (1976). Karstovie pescheri Gruzii (morfologicheskiy analiz [Karst caves of Georgia (morphological analysis)]. Tbilisi, Metsniereba (in Russian with English summary)

21. Tintilozov Z.K. (1983). Novoafonskaya peschernaya Sistema [Novy Afon cave system]. Tbilisi, Metsniereba (in Russian with English summary)

22. Vasil’chuk Yu.K., Chizhova J.N., Papesch W., and Budantseva N.A. (2006). Isotopniy sostav yazika lednika Bolshoi Azau na Elbruse [Isotope composition of Bolshoi Azau Glacier tongue, Elbrus]. Kriosphera Zemli [The Earth Cryosphere] 1: 56-68 (in Russian with English summary)

23. Vasil’chuk Yu.K., Vasil’chuk A.C. (2011). Isotopnie metody v geografii. Chast 1. Geokhimiya stabilnikh isotopov prirodnykh l’dov [Isotope Ratios in the Environment. Part 1. Stable isotope geochemistry of natural ice]. Moscow, Moscow University Press (in Russian)

For citation:


Views: 181

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)