Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Analysis Of The Mangrove Structure In The Dong Rui Commune Based On Multispectral Unmanned Aerial Vehicle Image Data

https://doi.org/10.24057/2071-9388-2023-2641

Abstract

Mangroves are one of the most important types of wetlands in coastal areas and perform many different functions. Assessing the structure and function of mangroves is a premise for the management, monitoring and development of this most diverse and vulnerable ecosystem. In this study, the unmanned aerial vehicle (UAV) Phantom 4 Multispectral was used to analyse the structure of a mangrove forest area of approximately 50 hectares in Dong Rui commune, Tien Yen district, Quang Ninh Province – one of the most diverse wetland ecosystems in northern Vietnam. Based on the visual classification method combined with the results of field taxonomic sampling, a mangrove tree classification map was established for UAV with three species, Bruguiera gymnorrhiza, Rhizophora stylosa, and Kandelia obovata, achieving an overall accuracy = 86.28%, corresponding to a Kappa coefficient =0.84. From the images obtained from the UAV, we estimated and developed maps and assessed the difference in tree height and four vegetation indices, including the normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), enhanced vegetation index (EVI), and green chlorophyll index (GCI), for three mangrove plant species in the flying area. Bruguiera gymnorrhiza and Rhizophora stylosa reach an average height of 4 to 5 m and are distributed mainly in high tide areas. Meanwhile, Kandelia obovata has a lower height (ranging from 2 to 4 m), distributed in low-tide areas, near frequent flows. This study confirms the superiority of UAV with red edge and near-infrared wave bands in classifying and studying mangrove structures in small-scale areas.

About the Authors

D. T. Ngo
Institute of Tropical Ecology, Joint Vietnam-Russia Tropical Science and Technology Research Center, № 63
Viet Nam

Nguyen Van Huyen Str., Cau Giay District, Hanoi



K. N. Quoc
Institute of Tropical Ecology, Joint Vietnam-Russia Tropical Science and Technology Research Center, № 63
Viet Nam

Nguyen Van Huyen Str., Cau Giay District, Hanoi



N. T. Dang
University of Science, Vietnam National University, No. 334
Viet Nam

Nguyen Trai Str., Thanh Xuan District, Hanoi



C. H. Dang
Institute of Tropical Ecology, Joint Vietnam-Russia Tropical Science and Technology Research Center, № 63
Viet Nam

Nguyen Van Huyen Str., Cau Giay District, Hanoi



L. L. Tran
Quang Ninh Department of Natural Resources and Environment, W4VF+P3 V
Viet Nam

Nguyen Van Cu Str., Ha Long District, Quang Ninh



H. D. Nguyen
Institute of Tropical Ecology, Joint Vietnam-Russia Tropical Science and Technology Research Center, № 63
Viet Nam

Nguyen Van Huyen Str., Cau Giay District, Hanoi



References

1. Abdullah, S., Tahar, K. N., Abdul Rashid, M. F., & Osoman, M. (2022). ESTIMATING TREE HEIGHT BASED ON TREE CROWN FROM UAV IMAGERY. Malaysian Journal of Sustainable Environment, 9, 99. doi: 10.24191/myse.v9i1.17294

2. Al-Najjar, H., Kalantar, B., Pradhan, B., Saeidi, V., Abdul Halin, A., Ueda, N., & Mansor, S. (2019). remote sensing Land Cover Classification from fused DSM and UAV Images Using Convolutional Neural Networks. Remote Sensing, 2019, 1461. doi: 10.3390/rs11121461

3. Andersen, H.-E., McGaughey, R., & Reutebuch, S. (2005). Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment, 94, 441-449. doi: https://doi.org/10.1016/j.rse.2004.10.013

4. Asy’Ari, R., Rahmawati, A., Sa’diyya, N., Gustawan, A., Setiawan, Y., Zamani, N., & Pramulya, R. (2022). Mapping mangrove forest distribution on Banten, Jakarta, and West Java Ecotone Zone from Sentinel-2-derived indices using cloud computing based Random Forest. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 12, 97-111. doi: https://doi.org/10.29244/jpsl.12.1.97-111

5. Baatz, M., & Schape, A. (2000). Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. Angew. Geogr. Info. verarbeitung, Wichmann-Verlag, Heidelberg, 12-23.

6. Bandini, F., Butts, M., Jacobsen, T., & Bauer-Gottwein, P. (2017). Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction. Hydrological Processes, 31. doi: https://doi.org/10.1002/hyp.11366

7. Breiman L. (2001). Random forests. Machine Learning, 1(45), 5–32.

8. Brennan, R., & Webster, T. (2006). Object-oriented land cover classification of LIDAR-derived surfaces. Canadian Journal of Remote Sensing, 32. doi: https://doi.org/10.5589/m06-015

9. Buğday, E. (2018). Capabilities of using UAVs in Forest Road Construction Activities. 4, 56-62. doi: https://doi.org/10.33904/ejfe.499784

10. Cao, J., Leng, W., Liu, K., Liu, L., he, Z., & Zhu, Y. (2018). Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models. Remote Sensing, 10, 89. doi: https://doi.org/10.3390/rs10010089

11. Chen, Y., Chen, Q., & Jing, C. (2019). Multi-resolution segmentation parameters optimization and evaluation for VHR remote sensing image based on mean NSQI and discrepancy measure. Journal of Spatial Science, 66, 1-26. doi: 10.1080/14498596.2019.1615011

12. Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20, 37-46. doi: https://doi.org/10.1177/001316446002000104?journalCode=epma

13. Costanza, R., Arge, Groot, R., Farberk, S., Grasso, M., Hannon, B., . . . Belt, M. (1997). The Value of the World’s Ecosystem Services and Natural Capital. Nature, 387, 253-260. doi: https://doi.org/10.1016/S0921-8009(98)00020-2

14. Dawes, C. (1999). Mangrove structure, litter and macroalgal productivity in a northern-most forest of Florida. Mangroves and Salt Marshes, 3, 259-267. doi: 10.1023/A:1009976025000

15. Deng, T., Fu, B., Liu, M., He, H., Donglin, F., Li, L., . . . Gao, E. (2022). Comparison of multi-class and fusion of multiple single-class SegNet model for mapping karst wetland vegetation using UAV images. Scientific Reports, 12. doi: 10.1038/s41598-022-17620-2

16. Dezhi, W., Wan, B., Qiu, P., Su, Y., Guo, Q., Wang, R., . . . Wu, X. (2018). Evaluating the Performance of Sentinel-2, Landsat 8 and Pléiades-1 in Mapping Mangrove Extent and Species. Remote Sensing, 10, 1468. doi: https://doi.org/10.3390/rs10091468

17. Doughty, C. L., Ambrose, R. F., Okin, G. S., & Cavanaugh, K. C. (2021). Characterizing spatial variability in coastal wetland biomass across multiple scales using UAV and satellite imagery. Remote Sensing in Ecology and Conservation, 7(3), 411-429. doi: https://doi.org/10.1002/rse2.198

18. FAO. (2007). The world’s mangroves 1980-2005 Food and Agriculture Organization of the United Nations. Rome.

19. Francke, T., López-Tarazón, J. A., & Schröder, B. (2008). Estimation of suspended sediment concentration and yield using linear models, Random Forests and Quantile Regression Forests. Hydrological Processes, 22, 4892-4904. doi: https://doi.org/10.1002/hyp.7110

20. George, R., Padalia, H., Kumar, S., & Sinha, S. (2020). Evaluating sensitivity of hyperspectral indices for estimating mangrove chlorophyll in Middle Andaman Island, India. Environmental Monitoring and Assessment, 191. doi: 10.1007/s10661-019-7679-6

21. Hese, S., Thiel, C., & Henkel, A. (2019). UAV based Multi Seasonal Deciduous Tree Species Analysis in the Hainich National Park using Multi Temporal and Point Cloud Curvature Features. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13, 363–370. doi: https://doi.org/10.5194/isprs-archives-XLII-2-W13-363-2019

22. Hoa, L., Tran, T., Gyeltshen, S., Nguyen, C., Tran, D., Luu, T., & Mán, D. (2020). Characterizing Spatiotemporal Patterns of Mangrove Forests in Can Gio Biosphere Reserve Using Sentinel-2 Imagery. Applied Sciences, 10, 4058. doi: https://doi.org/10.3390/app10124058

23. Huan, N. C. (2021). Established Dong Rui Wetland Reserve, Tien Yen, Quang Ninh Province (pp. 348). Quang Ninh: Department of Natural Resources and Environment of Quang Ninh province. Huang, H., He, S., & Chen, C. (2019). Leaf Abundance Affects Tree Height Estimation Derived from UAV Images. Forests, 10, 931. doi:10.3390/f10100931

24. Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., & Ferreira, L. G. (2002). Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sensing of Environment, 83, 195-213. doi: https://doi.org/10.1016/S0034-4257(02)00096-2

25. Hunt, J. E., Doraiswamy, P., McMurtrey, J., Daughtry, C., Perry, E., & Akhmedov, B. (2013). A visible band index for remote sensing leaf Chlorophyll content at the Canopy Scale. International Journal of Applied Earth Observation and Geoinformation, 21, 103–112. doi: https://doi.org/10.1016/j.jag.2012.07.020

26. Jiang, Y., Zhang, L., Yan, M., Qi, J., Fu, T., Fan, S., & Chen, B. (2021). High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data. Remote Sensing, 13, 1529. doi: https://doi.org/10.3390/rs13081529

27. Kamal, M., Phinn, S., & Johansen, K. (2014). Characterizing the Spatial Structure of Mangrove Features for Optimizing Image-Based Mangrove Mapping. Remote Sensing, 6, 984-1006. doi: 10.3390/rs6020984

28. Kavzoglu, T., & Yildiz, M. (2014). Parameter-Based Performance Analysis of Object-Based Image Analysis Using Aerial and Quikbird-2 Images. Paper presented at the Remote Sensing and Spatial Information Sciences, Gottingen.

29. Lassalle, G., & Souza Filho, C. (2022). Tracking canopy gaps in mangroves remotely using deep learning. Remote Sensing in Ecology and Conservation. doi: 10.1002/rse2.289

30. Lisein, J., Deseilligny, M., Bonnet, S., & Lejeune, P. (2013). A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery. Forests, 4, 922-944. doi: 10.3390/f4040922

31. Liu, T., & Abd-Elrahman, A. (2018). Multi-view object-based classification of wetland land covers using unmanned aircraft system images. Remote Sensing of Environment, 216. doi: https://doi.org/10.1016/j.rse.2018.06.043

32. Lorenz, S., Zimmermann, R., & Gloaguen, R. (2017). The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo—A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data. Remote Sensing, 9. doi: https://doi.org/10.3390/rs9010088

33. Ly, T. N., Van, P. D. T., Le, T. L., Jun, S., & Hisamichi, N. (2016). Mangrove structure variation under influences of tidal-inundation in the Bac Lieu coastal zone. Journal of Science and Technology.

34. ma, Q., Su, Y., & Guo, Q. (2017). Comparison of Canopy Cover Estimations From Airborne LiDAR, Aerial Imagery, and Satellite Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, PP, 1-12. doi: 10.1109/JSTARS.2017.2711482

35. Mallmann, C. L., Zaninni, A. F., & Filho, W. P. (2020). Vegetation Index Based In Unmanned Aerial Vehicle (Uav) To Improve The Management Of Invasive Plants In Protected Areas, Southern Brazil. 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), 66-69.

36. Maltamo, M., Eerikäinen, K., Pitkänen, J., Hyyppä, J., & Vehmas, M. (2004). Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment, 90, 319-330. doi: https://doi.org/10.1016/j.rse.2004.01.006

37. Matese, A., Toscano, P., Di Gennaro, S., Genesio, L., Vaccari, F., Primicerio, J., . . . Gioli, B. (2015). Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sensing, 7, 2971-2990. doi: https://doi.org/10.3390/rs70302971

38. Meivel, s., & Banu, D. (2023). Design and Method of an Agricultural Drone System Using Biomass Vegetation Indices and Multispectral Images (pp. 343-373).

39. Mitsch, W., & Gosselink, J. (2000). The Value of Wetlands: Importance of Scale and Landscape Setting. Ecological Economics, 35, 25-33. doi: https://doi.org/10.1016/S0921-8009(00)00165-8

40. Modi, A., & Das, P. (2019). Multispectral Imaging Camera Sensing to Evaluate Vegetation Index from UAV. Research & Reviews: Journal of Space Science & Technology, 8(2), 30-42.

41. Nagelkerken, I., Blaber, S. J. M., Bouillon, S., Green, P., Haywood, M., Kirton, L. G., . . . Somerfield, P. J. (2008). The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany, 89(2), 155-185. doi: https://doi.org/10.1016/j.aquabot.2007.12.007

42. Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6. doi: https://doi.org/10.1007/s12518-013-0120-x

43. Ngo, D., Nguyen, H., Dang, C., & Kolesnikov, S. (2020). UAV application for assessing rainforest structure in Ngoc Linh nature reserve, Vietnam. E3S Web Conf., 203, 03006.

44. Nguyen, D. H., & Ngo, T. D. (2021). Seasonal Dynamics of Tropical Forest Vegetation in Ngoc Linh Nature Reserve, Vietnam Based on UAV Data. Forest and Society, 5(2), 376-389. doi: https://doi.org/10.24259/fs.v5i2.13027

45. Nguyen, D. H., Ngo, T. D., Vu, V. D., & Du, Q. V. V. (2022). Establishing distribution maps and structural analysis of seagrass communities based on high-resolution remote sensing images and field surveys: a case study at Nam Yet Island, Truong Sa Archipelago, Vietnam. Landscape and Ecological Engineering. doi: https://doi.org/10.1007/s11355-022-00502-0

46. Nguyen, H. H., Nghia, N. H., Nguyen, H. T. T., Le, A. T., Ngoc Tran, L. T., Duong, L. V. K., . . . Furniss, M. J. (2020). Classification Methods for Mapping Mangrove Extents and Drivers of Change in Thanh Hoa Province, Vietnam during 2005-2018. Forest and Society, 4(1), 225-242. doi: 10.24259/fs.v4i1.9295

47. Nguyen, L. D., Nguyen, C. T., Le, H. S., & Tran, B. Q. (2019). Mangrove Mapping and Above-Ground Biomass Change Detection using Satellite Images in Coastal Areas of Thai Binh Province, Vietnam. Forest and Society, 3(2), 248-261. doi: 10.24259/fs.v3i2.7326

48. Nhan, H. T. T., Hai, H. T., & Canh, L. X. (2015). Biological deversity in Xuan Thuy National Park, Nam Dinh Province. Paper presented at the The 5th National Scientific Conference on Ecology and Biological Resources, Ha Noi.

49. Nicholls, R. (2004). Coastal Flooding and Wetland Loss in the 21st Century: Changes Under the SRES Climate and Socio-Economic Scenarios. Global Environmental Change, 14, 69-86. doi: 10.1016/j.gloenvcha.2003.10.007

50. Nur W, M., Hapsara, R., Cahyo, R., Wahyu, G., Syarif, A., Umarhadi, D., . . . Widyatmanti, W. (2017). Mangrove Structure Mapping Model Using Sentinel-2A Satellite Imagery. Paper presented at the International Symposium on Remote Sensing Japan.

51. Okojie, J. (2017). Assessment of the relative accuracy of canopy height models developed from UAV and LiDAR sourced datasets for forest tree height estimation in temperate forests. Paper presented at the Geospatial Systems for Apps Development and Research in Africa, Asokoro, Abuja.

52. Otero, V., Van De Kerchove, R., Satyanarayana, B., Martínez-Espinosa, C., Fisol, M. A. B., Ibrahim, M. R. B., . . . Dahdouh-Guebas, F. (2018). Managing mangrove forests from the sky: Forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia. Forest Ecology and Management, 411, 35-45. doi: https://doi.org/10.1016/j.foreco.2017.12.049

53. Pal, S., Mishra, A., & Singh, P. (2020). Assessment of Normalized Difference Vegetation Index by The Use of UAV Remote Sensing. International Journal of Advanced Science and Technology, 29, 4907-4914.

54. Panagiotidis, D., Abdollahnejad, A., Surovy, P., & Chiteculo, V. (2018). High resolution airborne UAV imagery to determine tree height and crown diameter. Pardo-Iguzquiza, E., Dowd, P., Ruiz-Constán, A., Martos-Rosillo, S., Luque-Espinar, J. A., Rodriguez-Galiano, V., & Pedrera, A. (2018). Epikarst mapping by remote sensing. Catena, 165, 1-11. doi: https://doi.org/10.1016/j.catena.2018.01.026

55. Pellegrini, J., Soares, M., Chaves, F., Estrada, G., & Cavalcanti, V. (2009). A Method for the Classification of Mangrove Forests and Sensitivity/Vulnerability Analysis. Journal of Coastal Research, SI56, 443-447.

56. People’s Committee of Tien Yen district. (2015). General report on socio-economic development master plan of Tien Yen district to 2020, orientation to 2030. Quang Ninh.

57. Pham, T. D., Yoshino, K., & Kaida, N. (2017). Monitoring Mangrove Forest changes in Cat Ba Biosphere Reserve using ALOS PALSAR Imagery and a GIS-based Support Vector Machine Algorithm. Paper presented at the International Conference on Geo-Spatial Technologies and Earth Resource.

58. Polidoro, B., Carpenter, K., Collins, L., Duke, N., Ellison, A., Ellison, J., . . . Yong, J. (2010). The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern. PloS one, 5, e10095. doi: https://doi.org/10.1371/journal.pone.0010095

59. Prasetyo, L., Nursal, W., Setiawan, Y., Rudianto, Y., Wikantika, K., & Irawan, B. (2019). Canopy cover of mangrove estimation based on airborne LIDAR & Landsat 8 OLI. IOP Conference Series: Earth and Environmental Science, 335, 012029. doi: 10.1088/1755-1315/335/1/012029

60. Prinzie, A., & Van den Poel, D. (2007). Random Multiclass Classification: Generalizing Random Forests to Random MNL and Random NB (Vol. 4653).

61. Qiao, L., Tang, W., Dehua, G., Zhao, R., An, L., Li, M., . . . Song, D. (2022). UAV-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages. Computers and Electronics in Agriculture, 196, 106775. doi: 10.1016/j.compag.2022.106775

62. Rhyma, P. P., Kamarudin, N., Omar, H., Faridah-Hanum, I., & Wahab, Z. (2019). Integration of normalised different vegetation index and Soil-Adjusted Vegetation Index for mangrove vegetation delineation. Remote Sensing Applications: Society and Environment, 17, 100280. doi: 10.1016/j.rsase.2019.100280

63. Richter, R., Reu, B., Wirth, C., Doktor, D., & Vohland, M. (2016). The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area. International Journal of Applied Earth Observation and Geoinformation, 52, 464-474. doi: 10.1016/j.jag.2016.07.018

64. Saenger, P. (2002). Mangrove Structure and Classification (pp. 183-205).

65. Safford, R. J., Tran, T., Maltby, E., & Ni, D. (1998). Status, biodiversity and management of the U Minh wetlands, Vietnam. Tropical Biodiversity, 5, 217-244.

66. Samsuri, S., Zaitunah, A., Meliani, S., Hasnanda Syahputra, O., Budiharta, S., Susilowati, A., . . . Azhar, I. (2021). Mapping of mangrove forest tree density using SENTINEL 2A satelit image in emained natural mangrove forest of Sumatra eastern coastal. IOP Conference Series: Earth and Environmental Science, 912, 012001. doi: https://doi.org/10.1088/1755-1315/912/1/012001

67. Sarno, Rujito, A. S., Zulkifli, D., Munandar, & Moh. Rasyid, R. (2015). Primary Mangrove Forest Structure and Biodiversity. Int J Agri Sys, 2, 135–141. doi: http://dx.doi.org/10.20956/ijas.v3i2.102

68. Singgalen, Y. (2022). Vegetation Index and Mangrove Forest Utilization through Ecotourism Development in Dodola and Guraping of North Maluku Province. Jurnal Manajemen Hutan Tropika (Journal of Tropical Forest Management), 28, 150-161. doi: https://doi.org/10.7226/jtfm.28.2.150

69. Singgalen, Y., Gudiato, C., Prasetyo, S., & Fibriani, C. (2021). Mangrove monitoring using normalized difference vegetation index (NDVI): case study in North Halmahera, Indonesia. Jurnal Ilmu dan Teknologi Kelautan Tropis, 13, 2. doi: https://doi.org/10.29244/jitkt.v13i2.34771

70. Song, B., & Park. (2020). Detection of Aquatic Plants Using Multispectral UAV Imagery and Vegetation Index. Remote Sensing, 12, 387. doi: 10.3390/rs12030387

71. Thinh, N., Huan, N., Pham, U., & Sσn Tùng, N. (2008). Landscape ecological planning based on change analysis: A case study of mangrove restoration in Phu Long-Gia Luan area, Cat Ba Archipelago. VNU Journal of Science, Earth Sciences, 24, 133-144.

72. Tiwari, A., Sharma, S., Dixit, A., & Mishra, V. (2020). UAV Remote Sensing for Campus Monitoring: A Comparative Evaluation of Nearest Neighbor and Rule-Based Classification. Journal of the Indian Society of Remote Sensing, 49. doi: https://doi.org/10.1007/s12524-020-01268-4

73. Toan, D. (2014). Statistical assessment of the properties of the East Sea and the coast of Vietnam in the period 1951-2013. Estuarine and Coastal Marine Science, 12, 13.

74. Tucker, C. (1979). Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of Environment, 8. doi: https://doi.org/10.1016/0034-4257(79)90013-0

75. Van, T., Nguyen Dang, M., Khiem, M., Duong, T. H., Van, K., Thanh, T., . . . Minh, T. (2022). Climatic Factors Associated with Heavy Rainfall in Northern Vietnam in Boreal Spring. Advances in Meteorology, 2022, 1-14. doi: https://doi.org/10.1155/2022/5917729

76. Viet, H., Potokin, A., Anh, D., Nguyen, T., & Nguyen, T. (2020). Forest Vegetation Cover in Tram Chim National Park in Southern Vietnam. IOP Conference Series: Earth and Environmental Science, 574, 012014. doi: https://doi.org/10.1088/1755-1315/574/1/012014

77. Watson, J. (1925). Mangrove Forests of the Malay Peninsula. Malays. For. Rec., 6, 1-275.

78. Xue, L., & Yang, L. (2009). Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. Isprs Journal of Photogrammetry and Remote Sensing - ISPRS J PHOTOGRAMM, 64, 97-106. doi: 10.1016/j.isprsjprs.2008.06.002

79. Yaney-Keller, A., Tomillo, P., Marshall, J., & Paladino, F. (2019). Using Unmanned Aerial Systems (UAS) to assay mangrove estuaries on the Pacific coast of Costa Rica. PloS one, 14, e0217310. doi: 10.1371/journal.pone.0217310

80. Yeom, J., Jung, J., Chang, A., Ashapure, A., Maeda, M., Maeda, A., & Landivar, J. (2019). Comparison of Vegetation Indices Derived from UAV Data for Differentiation of Tillage Effects in Agriculture. Remote Sensing, 11, 1548. doi: 10.3390/rs11131548

81. Yin, D., & Wang, L. (2019). Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges. Remote Sensing of Environment, 223, 34-49. doi: 10.1016/j.rse.2018.12.034

82. Yunjun, Y., Deng, H., Liu, Y., & Zhu. (2019). Application of UAV-Based Multi-Angle Hyperspectral Remote Sensing in Fine Vegetation Classification. Remote Sensing, 11, 2753. doi: https://doi.org/10.3390/rs11232753

83. Zahra, N., Setiawan, Y., & Prasetyo, L. (2022). Estimation of Mangrove Canopy Cover Using Unmanned Aerial Vehicle (UAV) in Indramayu Regency, West Java. IOP Conference Series: Earth and Environmental Science, 950, 012032. doi: 10.1088/1755-1315/950/1/012032

84. Zhang, C. (2020). Assessing the Effects of Hurricane Irma on Mangrove Structures in the Coastal Everglades using Airborne Lidar Data Multi-sensor System Applications in the Everglades Ecosystem (1st Edition ed., pp. 289-302).

85. Zhao, Y., Yan, C., Lu, S., Wang, P., Qiu, G., & Li, R. (2019). Estimation of chlorophyll content in intertidal mangrove leaves with different thicknesses using hyperspectral data. Ecological Indicators, 106, 105511. doi: 10.1016/j.ecolind.2019.105511

86. Zulfa, A. W., Norizah, K., Hamdan, O., Faridah-Hanum, I., Rhyma, P. P., & Fitrianto, A. (2021). Spectral signature analysis to determine mangrove species delineation structured by anthropogenic effects. Ecological Indicators, 130, 108148. doi: https://doi.org/10.1016/j.ecolind.2021.108148

87. Zulfa, A. W., Norizah, K., Hamdan, O., Zulkifly, S., Faridah-Hanum, I., & Rhyma, P. P. (2020). Discriminating trees species from the relationshipbetween spectral reflectance and chlorophyll contents of mangrove forest in Malaysia. Ecological Indicators, 111, 106024. doi: https://doi.org/10.1016/j.ecolind.2019.106024


Review

For citations:


Ngo D.T., Quoc K.N., Dang N.T., Dang C.H., Tran L.L., Nguyen H.D. Analysis Of The Mangrove Structure In The Dong Rui Commune Based On Multispectral Unmanned Aerial Vehicle Image Data. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2023;16(4):14-25. https://doi.org/10.24057/2071-9388-2023-2641

Views: 724


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)