Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Thermal Regime of Permafrost on the Western Yamal Under Climate Warming

https://doi.org/10.24057/2071-9388-2023-2810

Abstract

Climate change observed in the Arctic affects all components of the natural environment, including the state of permafrost. The purpose of this study is to quantify the response of permafrost in various landscapes to changing climatic parameters. The results of long-term field observations (1978-2021) of the thermal regime of permafrost on the Western Yamal are presented. Along with the increase in mean annual air temperatures, the mean annual ground temperature over the past 43 years has increased by 1.5-2.2°C. The maximum increase of permafrost temperature values is observed on flat and polygonal tundra, the minimum increase is typical for flooded lake basins. A decrease in the annual permafrost temperature amplitude was revealed. That is caused by a rapid increase in the air temperature of the cold period, an increase in the snow thickness and an increase in soil moisture in the active layer. The shrinking in ground temperature amplitude at a depth of 5 m is 0.5-3.6°C. A trend of reducing depth of zero annual amplitude from 12-18 m (1980) to 13-16 m (2021) has been revealed.

About the Authors

K. A. Nikitin
Lomonosov Moscow State University
Russian Federation

Kirill A. Nikitin

119991 Moscow



N. G. Belova
Lomonosov Moscow State University
Russian Federation

Nataliya G. Belova

119991 Moscow



A. A. Vasiliev
Earth’s Cryosphere Institute, Tyumen Scientific Center SB RAS
Russian Federation

Alexander A. Vasiliev

625026 Tyumen



References

1. AMAP (2011). Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo.

2. AMAP (2021). AMAP Arctic Climate Change Update 2021: Key Trends and Impacts. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway. viii+148pp.

3. Anthropogenic changes in the ecosystems of the West Siberian gas-bearing province (2006). Ed. Moskalenko N.G. Tyumen: ECI SB RAS, 357 p. (in Russian)

4. Berner L.T., Massey R., Jantz P., Forbes B.C., Macias-Fauria M., Myers-Smith I., et al. (2020). Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat Commun.; 11: 1–12. Pmid:32963240.

5. Biskaborn B.К., Smith S.L., Noetzl J. et al. (2019). Permafrost is warming at а global scale. Nature communications, 10; 264.

6. Brown J., Hinkel K.M., Nelson F.E. (2000). The circumpolar active layer monitoring (CALM) program: research designs and initial results. Polar Geogr. 24 (3), 166-258.

7. Drozdov D.S., Ukraintseva N.G., Tsarev A.M., Chekrygina S.N. (2010). Changes of permafrost temperature field and geosystem state on the Urengoy oil-gas-field territory during the last 35 years (1974–2008). Earth’s Cryosphere, 14(1), 22-31 (in Russian with English summary). Available at: http://earthcryosphere.ru/arch/eng2010-1/drozdov_eng2010-1/

8. Dubrovin V.A. and Kritsuk L.N. (2011). Evaluation of the permafrost dynamics and temperature regime in the Marre-Sale area according to monitoring observations. Proceedings of the Fourth Conference of Geocryologists of Russia. Moscow: MSU. Vol. 2. 236-243 (in Russian).

9. Farquharson L.M., Romanovsky V.E., Cable W.L., Walker D.A., Kokelj S.V., Nicolsky D. (2019). Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophysical Research Letters, 46, 6681-6689. DOI: 10.1029/2019GL082187.

10. Jespersen R.G., Anderson-Smith M., Sullivan P.F., Dial R.J., Welker J.M. (2023) NDVI changes in the Arctic: Functional significance in the moist acidic tundra of Northern Alaska. PLoS ONE 18(4): e0285030. DOI: 10.1371/journal.pone.0285030.

11. Kanevskiy M.Z., Streletskaya I.D., Vasiliev A.A. (2005). Formation of cryogenic structure of Quaternary sediments in Western Yamal (by the example of Marre-Sale area). Earth’s Cryosphere, 9(3), 16-27 (in Russian with English abstract). Available at: http://earthcryosphere.ru//archive/2005_3/2005_3_16-27.pdf

12. Kaverin D.A., Pastukhov A.V., Novakovskiy A.B. (2017). Active layer thickness dynamics in the tundra permafrost-affected soils: a calm site study, the European North of Russia. Earth’s Cryosphere, 21(6), 30-38. Available at: http://earthcryosphere.ru/arch/eng2017-6/

13. Khrustalev L.N., Klimenko V.V., Emelyanova L.V., Ershov E.D., Parmuzin S.Yu., Mikushina O.V., Tereshion A.G. (2008). Dynamics of permafrost temperature in southern regions of cryolithozone under different scenarios of climate change. Earth’s Cryosphere, 12(1), 3-11 (in Russian with English abstract). Available at: http://earthcryosphere.ru//archive/2008_1/01.Khrustalev_1_2008.pdf

14. Konstantinov P.Ya., Fedorov A.N., Ugarov I.S., Argunov R.N., Susdalov D.A., Iijima Y. (2014). Results of investigations on interannual variability of seasonal thaw depth in the vicinity of Yakutsk. Earth’s Cryosphere, 18(4), 20-28. Available at: http://earthcryosphere.ru/arch/eng2014-4/

15. Kotov P.I., Khilimonyuk V.Z. (2021). Building stability on permafrost in Vorkuta, Russia. Geography, Environment, Sustainability, 14(4), 67-74. DOI: 10.24057/2071-9388-2021-043.

16. Landscapes of the permafrost zone of the West Siberian gas-bearing province (1983). Ed. Melnikova E.S. Novosibirsk: Nauka, 164 p. (in Russian).

17. Malkova G., Drozdov D., Vasiliev A., Gravis A., Kraev G., Korostelev Y., Nikitin K., Orekhov P., Ponomareva O., Romanovsky V. et al. (2022). Spatial and Temporal Variability of Permafrost in the Western Part of the Russian Arctic. Energies, 15, 2311. DOI: 10.3390/en15072311.

18. Melnikov V.P., Skvortsov A.G., Malkova G.V. et al. (2010). Seismic studies of frozen ground in Arctic areas. Russian Geology and Geophysics, 51(1), 136-142. DOI: 10.1016/j.rgg.2009.12.011.

19. Moskalenko N.G. (2009). Permafrost and vegetation changes in the Nadym region of West Siberian northern taiga due to the climate change and technogenesis. Earth’s Cryosphere, 13(4), 18-23 (in Russian with English abstract). Available at: http://earthcryosphere.ru//archive/2009_4/02.Moskalenko_4_2009.pdf

20. Noetzli, J., Christiansen, H.H., Hrbacek, F., Isaksen, K., Smith, S.L., Zhao, L., and Streletskiy D.A. (2021). Cryosphere – 1) Permafrost thermal state [in «State of the Climate in 2020»]. Bulletin of the American Meteorological Society 102(8): 42-45. DOI: 10.1175/BAMS-D-21-0086.1.

21. Oblogov G.E., Vasiliev A.A., Streletskaya I.D., Zadorozhnaya N.A., Kuznetsova A.O., Kanevskiy M.Z., Semenov P.B. (2020). Methane content and emission in the permafrost landscapes of Western Yamal, Russian Arctic. Geosciences, 10, 412. DOI: 10.3390/geosciences10100412.

22. Pavlov A.V. (1997). Permafrost-climatic monitoring of Russia: methodology, results of observation and forecast. Earth’s Cryosphere, 1(1), 47-58 (in Russian with English abstract). Available at: http://earthcryosphere.ru//archive/1997_1/47-58.pdf.

23. Pavlov A.V., Malkova G.V., Skachkov Yu.B. (2007). Modern tendencies in the evolution of thermal state of cryolithozone under the climate changes. Proceedings of the International Conference «Cryogenic Resources of Polar Regions», Salekhard, v. 1, 34-38 (in Russian with English summary).

24. Romanovsky V.E. (2006). Thermal state of permafrost in Alaska during the past 20 years. Proceedings of the International Conference «Earth’s cryosphere assessment: theory, applications and prognosis of alterations», Tyumen, v.1, 96-101 (in English and Russian).

25. Romanovsky V., Drozdov D., Oberman N., Malkova G., Kholodov A., Marchenko S., Moskalenko N., Sergeev D., Ukraintseva N., Abramov A., Vasiliev A. (2010). Thermal state of permafrost in Russia. Permafrost Periglacial Process. 21(2), 136-155.

26. Romanovsky V., Smith S., Isaksen K., Shiklomanov N., Streletskiy D., Kholodov A., Christiansen H., Drozdov D., Malkova G. and Marchenko S. (2018) Terrestrial Permafrost. In: ‘State of the Climate in 2017’, Bull. Am. Meteorol. Soc. 99 S161–5.

27. Sergeev D.O., Stanilovskaya J.V., Perlshtein G.Z., Romanovsky V.E., Bezdelova A.P., Alexutina D.M., Bolotyuk M.M., Khimenkov A.N., Kapralova V.N., Motenko R.G., Maleeva A.N. (2016). Background geocryological monitoring in Northern Transbaikalia region. Earth’s Cryosphere, 20(3), p. 24-32.

28. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V. and Midgley P.M. (eds.). IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

29. Streletskaya I.D., Pismeniuk A.A., Vasiliev A.A., Gusev E.A., Oblogov G.E. and Zadorozhnaya N.A. (2021) The Ice-Rich Permafrost Sequences as a Paleoenvironmental Archive for the Kara Sea Region (Western Arctic). Front. Earth Sci. 9:723382. DOI: 10.3389/feart.2021.723382

30. Streletskiy D.A., Sherstiukov A.B., Frauenfeld O.W., Nelson F.E. (2015). Changes in the 1963-2013 shallow ground thermal regime in Russian permafrost regions. Environ. Res. Lett., 10, 125005.

31. Streletskiy D.A., Maslakov A.A., Streletskaya I.D., Nelson F.E. (2021). Permafrost Regions In Transition: Introduction. Geography, Environment, Sustainability, 14(4):6-8. DOI: 10.24057/2071-9388-2021-081.

32. Tregubov О.D., Glotov V.E., Konstantinov P.Y., Shamov V.V. (2021). Hydrological conditions of drained lake basins of the Anadyr Lowland under changing climatic conditions. Geography, Environment, Sustainability, 14(4), 41-54, DOI: 10.24057/2071-9388-2021-030.

33. Vasilchuk A.C. and Vasilchuk Yu.K. (2015a). Engineering-geological and geochemical conditions of polygonal landscapes on the Bely Island (the Kara Sea). Engineering Geology, 1, 50-72 (in Russian with English summary).

34. Vasilchuk A.C. and Vasilchuk Yu.K. (2015b). Engineering-geological and geochemical conditions of polygonal landscapes in the area of the Tambey River mouth (the north of the Yamal Peninsula). Engineering Geology, 4, 36-54; 82-83 (in Russian with English summary).

35. Vasilchuk Yu.K., Budantseva N.A., Chizhova Yu.N. (2017). Rapid degradation of palsa near the Abez settlement, north-east of the European Russia. Arctic and Antarctica, 3, 30-51 (in Russian). DOI: 10.7256/2453-8922.2017.3.24432.

36. Vasiliev A., Drozdov D., Gravis A., Malkova G., Nyland K. and Streletskiy D. (2020). Permafrost degradation in the Western Russian Arctic. Environmental Research Letters, 15(4): 045001. DOI: 10.1088/1748-9326/ab6f12.

37. Vasiliev A.A., Gravis A.G., Gubarkov A.A., Drozdov D.S., Korostelev Yu.V., Malkova G.V., Oblogov G.E., Ponomareva O.E., Sadurtdinov M.R., Streletskaya I.D., Streletskiy D.A., Ustinova E.V., Shirokov R.S. (2020). Permafrost degradation: results of the long-term geocryological monitoring in the Western sector of Russian Arctic. Earth’s Cryosphere, 24 (2), 15–30. Available at: http://earthcryosphere.ru/arch/eng2020-2/Vasiliev_2020_2_eng/

38. Vasiliev A.A., Streletskaya I.D., Shirokov R.S., Oblogov G.E. (2011). Coastal permafrost evolution of Western Yamal in context of climate change. Earth’s Cryosphere, 15 (2), 56-64 (in Russian with English summary). Available at: http://earthcryosphere.ru/arch/eng2011-2/

39. von Fischer J.C., Rhew R.C., Ames G.M., Fosdick B.K., von Fischer P.E. (2010). Vegetation height and other controls of spatial variability in methane emissions from the Arctic coastal tundra at Barrow, Alaska. J. Geophys. Res., 115, G00I03.

40. Walker D.A., Raynolds M.K., Daniëls F.J.A., Einarsson E., Elvebakk A., Gould W.A., Katenin A.E., Kholod S.S., Markon C.J., Melnikov E.S., Moskalenko N.G., Talbot S.S., Yurtsev B.A. (2005). The Circumpolar Arctic Vegetation Map. J. Veg. Sci., 16 (3), 267-282.

41. Walker D.A., Epstein H.E., Raynolds M.K., Kuss P., Kopecky M.A., Frost G.V., Daniëls F.J.A., Leibman M.O., Moskalenko N.G., Matyshak G.V. (2012). Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environ. Res. Lett. 7 015504. DOI: 10.1088/1748-9326/7/1/015504.


Review

For citations:


Nikitin K.A., Belova N.G., Vasiliev A.A. Thermal Regime of Permafrost on the Western Yamal Under Climate Warming. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2023;16(3):75-82. https://doi.org/10.24057/2071-9388-2023-2810

Views: 661


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)