Hydrochemical And Bacterial Properties Of Water Bodies Of The East European Plain During Low Water Period
https://doi.org/10.24057/2071-9388-2022-061
Abstract
This paper is devoted to the study of the chemical and biological properties of river waters and the relationship between them. We examined the hydrochemical and bacterial properties of surface water in 3 waterbodies: the Mezha River, a pond in Zapovedny village (Central Forest Nature Reserve, Tver Oblast) and the lower reaches of the Don River (Rostov Oblast). The biodiversity of bacteria was determined based on their growth on dissolved organic matter (DOM). Among bacterioplankton capable of growing on DOM as the only source of carbon, the predominant species in the Don River were Pseudomonas and Deinococcus, in the Mezha River – Pseudomonas and Janthinobacterium, in the pond – Arcicella. In terms of sanitary and microbiological indicators, none of the waterbodies complied with the Sanitary Rules and Regulations 1.2.3685- 21 for surface waters. The content of most of the studied elements and heterotrophic bacteria in stagnant waterbodies was lower than in flowing streams. The concentration and activity of heterotrophic bacteria in the studied waters correlated positively with the content of biophilic elements in them and negatively with the absence of a current. We showed that there is a strong correlation between bacterial and chemical indicators due to common factors: eutrophication, features of the physical and geographical conditions of the territory, and the presence of a current or animal waste products.
About the Authors
V. V. TikhonovRussian Federation
Leninskie Gory 1, 12, 119991, Moscow
D. R. Koriytchuk
Russian Federation
Leninskie Gory 1, 12, 119991, Moscow
A. V. Yakushev
Russian Federation
Leninskie Gory 1, 12, 119991, Moscow
V. S. Cheptsov
Russian Federation
Leninskie Gory 1, 12, 119991, Moscow
M. M. Karpukhin
Russian Federation
Leninskie Gory 1, 12, 119991, Moscow
R. A. Aimaletdinov
Russian Federation
Leninskie Gory 1, 12, 119991, Moscow
O. Yu. Drozdova
Russian Federation
Leninskie Gory 1, 12, 119991, Moscow
References
1. Amado A. and Roland F. (2017). Microbial role in the carbon cycle in tropical inland aquatic ecosystems. Frontiers in Microbiology, 8, 20, DOI: 10.3389/fmicb.2017.00020
2. Azam F., Fenchel T., Field J., Gray J., Meyer-Reil L. and Thingstad F. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser.,10, 257-263.
3. Baltrus D., Yourstone S., Lind A., Guilbaud C., Sands D. C., Jones C. D. and Dangl J. (2014). Draft genome sequences of a phylogenetically diverse suite of Pseudomonas syringae strains from multiple source populations. Genome Announcements, 2(1), 01195-13, DOI: 10.1128/genomeA.01195-13
4. Belkova N.L., Parfenova V.V., Kostornova T.Ya., Denisova L.Ya. and Zaichikov E.F. (2003). Microbial biodiversity in the water of lake Baikal. Microbiology, 72, 203-213
5. Belov A., Cheptsov V. and Vorobyova E. (2018). Soil bacterial communities of Sahara and Gibson deserts: Physiological and taxonomical characteristics. AIMS microbiology, 4(4), 685-710, DOI: 10.3934/microbiol.2018.4.685
6. Cai W., Li Y., Hu J. and Cheng H. (2021). Exploring the Microbial Ecological Functions in Response to Vertical Gradients in a Polluted Urban River. CLEAN–Soil, Air, Water, 49(9), 2100004, DOI: 10.1002/clen.202100004
7. Dolgonosov B.M., Korchagin K.A. and Messineva E.M. (2014). Model of fluctuations in bacteriological indices of water quality.Water Resources, 2014, 33(6), 637-650, DOI: 10.1134/S0097807806060054
8. Drozdova O.Yu., Karpukhin M.М., Dumtsev S.V. and Lapitskiy S.A. (2021). The forms of metals in the water and bottom sediments of the Malaya Sen’ga river (Vladimir oblast). Moscow University Geology Bulletin,76(3), 336-342, DOI: 10.3103/S0145875221030030
9. Wright E., Yilmaz L. and Noguera D. (2012). DECIPHER, A Search-Based Approach to Chimera Identification for 16S rRNA Sequences. Applied and Environmental Microbiology,78(3), 717-725, DOI: 10.1128/AEM.06516-11
10. Fasching C., Behounek B., Singer G. and Battin T. (2014). Microbial degradation of terrigenous dissolved organic matter and potential consequences for carbon cycling in brown-water streams. Scientific Reports, 4(1), 1-7, DOI:10.1038/srep04981
11. Friedrich I., Hollensteiner J., Schneider D., Poehlein A., Hertel R. and Daniel R. (2020). First complete genome sequences of Janthinobacterium lividum EIF1 and EIF2 and their comparative genome analysis. Genome Biology and Evolution, 12(10), 1782-1788, DOI: 10.1093/gbe/evaa148
12. Grishantseva E.S. Alekhin Yu.V., Drozdova O.Yu, Demin V.V and Zavgorodnyaya Yu.A. (2020). Experimental studies of organic matter in natural waters of lakes in Vladimir region using a set of analytical methods. Experiment in GeoSciences, 26(1), 126–129
13. Judd K., Crump B. and Kling G. (2006). Variation in dissolved organic matter controls bacterial production and community composition. Ecology, 87, 2068–2079. DOI: 10.1890/0012-9658(2006)87[2068:VIDOMC]2.0.CO;2
14. Kepkay P. (1994). Particle aggregation and the biological reactivity of colloids. Mar. Ecol. Prog. Ser., 109, 293–304
15. Kopylov A. I. and Kosolapov D.B. (2011). Microbial Loop in Plankton Communities of Marine and Freshwater Ecosystems. Izhevsk: Knigograd, 332 (In Russian)
16. Lartseva L.V., Obuhova O.V. and Istelueva A.A. (2015). The geoecological aspects of bacteriocoenosis in Volga delta in conditions of anthropogenic load. South of Russia: ecology, development, 4(4), 170-173. (In Russian), DOI: 10.18470/1992-1098-2009-4-170-173
17. Lobbes J., Fitznar H. and Kattner G. (2000). Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochimica et Cosmochimica Acta, 64(17), 2973-2983, DOI: 10.1016/S0016-7037(00)00409-9
18. Moriarty E., Karki N., Mackenzie M., Sinton L., Wood D. and Gilpin B. (2011). Faecal indicators and pathogens in selected New Zealand waterfowl. New Zealand Journal of Marine and Freshwater Research, 45(4), 679-688, DOI: 10.1080/00288330.2011.578653
19. Obukhova O.V., Lartseva L.V., Volodina V.V. and Vasilyeva L.M. (2017). Dynamics of potentially pathogenic microflora of the water and pike perch in the Volga Delta.Contemporary Problems of Ecology, 10(5), 563-574, DOI: 10.1134/S1995425517050109
20. Pakusina A.P., Tsarkova M.F., Platonova T.P., Kolesnikova T.P. (2022). Characteristics of the Zavitaya River in terms of hydrochemical and microbiological indicators during the flood of 2021. IOP Conference Series: Earth and Environmental Science, 981, 4, 042068, DOI: 10.1088/1755-1315/981/4/042068
21. Richardson J. and Mackay R. (1991). Lake outlets and the distribution of filter-feeders: An assessment of hypotheses.Oikos., 62, 370-380, DOI:10.2307/3545503
22. Semenov A. М. (1991). Physiological Bases of Oligotrophy of Microorganisms and Concept of Microbial Community. Microb. Ecol., 22, 239- 247. DOI: 10.1007/BF02540226
23. Skinner Q., Speck J., Smith M. and Adams J. (1998). Stream water quality as influenced by beaver within grazing systems in Wyoming. Journal of Range Management Archives, 37(2), 142-146
24. Sorokovikova L.M., Popovskaya G.I., Tomberg I.V., Sinyukovich V.N., Kravchenko O.S., Marinaite, I.I., Bashenkhaeva N.V. and Khodzher T.V. (2011). The Selenga River water quality on the border with Mongolia at the beginning of the 21st century. Russian Meteorology and Hydrology, 38(2), 126-133, DOI: 10.3103/S1068373913020106
25. Standridge J., Delfino J., Kleppe L. and Butler R. (1979). Effect of waterfowl (Anas platyrhynchos) on indicator bacteria populations in a recreational lake Madison, Wisconsin. Applied and Environmental Microbiology, 38(3), 547-550, DOI: 10.1128/aem.38.3.547-550.1979
26. Tanentzap A., Fitch A., Orland C., Emilson E., Yakimovich K., Osterholz H. and Dittmar T. (2019). Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proc. Natl. Acad. Sci. U.S.A., 116, 24689–24695, DOI: 10.1073/pnas.1904896116
27. Tuohy J., Mueller-Spitz S., Albert C., Scholz-Ng S., Wall M., Noutsios G. and Sandrin, T. R. MALDI-TOF MS affords discrimination of Deinococcus aquaticus isolates obtained from diverse biofilm habitats//Frontiers in Microbiology.2018. 2442. DOI: 10.3389/fmicb.2018.02442
28. Van Horn D., Sinsabaugh R., Takacs-Vesbach C., Mitchell K. and Dahm C. (2011). Response of heterotrophic stream biofilm communities to a gradient of resources. Aquatic Microbial Ecology,64(2), 149-161. DOI:10.3354/ame01515
29. Yakushev A. V. (2015). Integral structural–functional method for characterizing microbial populations. Eurasian Soil Science, 48(4), 378–394. DOI: 10.1134/S1064229315040110
30. Yang N., Zhang C., Wang L., Li Y., Zhang W., Niu L., Zhang H. and Wang, L. (2021). Nitrogen cycling processes and the role of multi-trophic microbiota in dam-induced river-reservoir systems.Water Research, 206, 117730. DOI: 10.1016/j.watres.2021.117730
31. Zhuravlev P.V., Aleshnya V.V., Golovina S.V., Panasovets O.P., Nedachin E.A., Talaeva Yu.G., Artemova T.Z., Gipp E.K., Zagaynova A.V. and Butorina N.N. (2010). Monitoring bakterial’nogo zagryazneniya vodoemov Rostovskoy oblasti. Gigiena i Sanitariya, 5, 33-36 (in Russian)
Review
For citations:
Tikhonov V.V., Koriytchuk D.R., Yakushev A.V., Cheptsov V.S., Karpukhin M.M., Aimaletdinov R.A., Drozdova O.Yu. Hydrochemical And Bacterial Properties Of Water Bodies Of The East European Plain During Low Water Period. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2023;16(1):163-171. https://doi.org/10.24057/2071-9388-2022-061