Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Magnetic Particles In Soils And Epiphytes In The Zone Of Influence Of A Ferrous Metallurgy Factory In The City Of Perm

https://doi.org/10.24057/2071-9388-2022-058

Abstract

The intensification of industrial production leads to an increase in the technogenic impact on the environment. Minerals containing iron are sensitive to many environmental processes and analysis of the composition of magnetic particles is relevant in the study of environmental pollution. This study focused on urban soils of near-trunk circles and epiphytic mosses on Populus nigra L. in the territory of Motovilikhinsky district of Perm, where a metallurgical plant is located. In this work, using electron probe microanalysis and scanning electron microscopy, we analyzed the magnetic susceptibility (MS), morphology, and chemical composition of magnetic particles isolated from urban soils and epiphytic mosses. The content of heavy metals in the studied soils exceeds the clarkes of chemical elements (CCE) in the upper continental crust: Cr - 286 times, Mn - 15 times, Fe - 11 times, Ti - 4 times, Mg - 4 times. The study of the chemical composition of epiphytes made it possible to assess the contribution of aerial sources to soil pollution. The concentrations of metals in the magnetic particles of epiphytes also exceed the Clarke values: Cr - 3257 times, Fe - 8 times, Ti - 7 times, Mg - 4 times. The similarity of the morphology and chemical composition of the magnetic particles of soils and epiphytes indicate common sources of pollution. A comprehensive assessment of the state of the territory may include magneto-geochemical monitoring of the soil cover and monitoring of the magnetic state of epiphytes on Populus nigra L.

About the Authors

A. V. Bobrova
Federal State Budgetary Educational Institution of Higher Education «Perm State Agro-Technological University named after Academician D.N. Pryanishnikov»
Russian Federation

23 Petropavlovskaya street, 614045, Perm



A. A. Vasil’ev
Federal State Budgetary Educational Institution of Higher Education «Perm State Agro-Technological University named after Academician D.N. Pryanishnikov»
Russian Federation

23 Petropavlovskaya street, 614045, Perm



References

1. Ananyan A.S., Koroleva Yu.V., Alekseyonok Yu.V. (2020). Biomonitoring of heavy metals in the territory of the Kaliningrad region // International Scientific Research Journal. № 12-2 (102), 25-31, DOI: 10.23670/IRJ.2020.102.12.038

2. Babanin V.F., Truhin V.I., Karpachevskij L.O., Ivanov A.V., Morozov V.V. (1995). Soil magnetism // Yaroslavl: YaGTU, 223.

3. Bobrova A.V., Vasil’ev A.A. (2021). Heavy metals in soils and mosses-epiphytes of the Leninsky district of the city of Izhevsk // [Electronic resource] // AgroEcoInfo:

4. Electronic scientific and production journal. №4. – URL: http://agroecoinfo.ru/STATYI/2021/4/st_402.pdf, DOI: 10.51419/20214402.

5. Chaparro M.A.E. (2021). Airborne particle accumulation and loss in pollution-tolerant lichens and its magnetic quantification // Environmental Pollution, 288, 117807, DOI: 10.1016/j.envpol.2021.117807

6. Evseev A.V., Shakhpenderyan E.A., Sultygova Kh.S. (2021). Aerosol income of man-made pollutants into environment components in the central-kola impact region // Ecosystems: ecology and dynamics, 5(1), 74-93.

7. Fernández J.A., Boquete M.T., Carballeira A., Aboal J.R. (2015). A critical review of protocols for moss biomonitoring of atmospheric deposition: sampling and sample preparation // Science of the Total Environment, 517, 132-150, DOI: 10.1016/j.scitotenv.2015.02.050

8. Gatziolis D., Jovan S., Donovan G., Amacher M., Monleon V. (2016). Elemental atmospheric pollution assessment via moss-based measurements in Portland, Oregon // Gen. Tech. Rep. PNW-GTR-938. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 938, 55, DOI: 10.2737/PNW-GTR-938

9. Gordeev K., Shakhnovich I., Shishkin A. (2016). From production control to cell cultivation. Advanced solutions at Analytica // Analytics. 2017, 2(33), 38-65, DOI: 10.22184/2227-572X.2017.33.2.38.65

10. Jiang Y., Fan M., Hu R., Zhao J., Wu Y. (2018). Mosses are better than leaves of vascular plants in monitoring atmospheric heavy metal pollution in urban areas // International journal of environmental research and public health, 15(6), 1105, DOI: 10.3390/ijerph15061105

11. Kataeva M.N., Belyaeva A.I. (2021). Accumulation of heavy metals in epiphytic liches of the Middle Taiga subzone of the spruce // International Journal of Applied and Fundamental Research, 7, 17-21.

12. Kirana K.H., Apriliawardani J., Ariza D., Fitriani D., Agustine E., Bijaksana S., Nugraha M.G. (2021). Frequency Dependent Magnetic Susceptibility in Topsoil of Bandung City, Indonesia // IOP Conference Series: Earth and Environmental Science. IOP Publishing, 873(1), 012016, DOI: 10.1088/1755-1315/873/1/012016

13. Kopylov I.S. (2013). Anomalies of heavy metals in soils and snow cover of the city of Perm as manifestations of factors of geodynamics and technogenesis // Fundamental Research. 2013, 1-2, 335-339.

14. Kropova Yu.G., Khovrin A.N., Vyrodov I.V. (2022). Influence of the transport and road complex on the pollution of soils and plants with heavy metals // Vestnik NSAU (Novosibirsk State Agrarian University), 4, 36-44, DOI: 10.31677/2072-6724-2021-61-4-36-44

15. Makarov A.B., Osovetsky B.M., Antonova I.A. (2017). Magnetic spherules from soils near the slag dump of the Nizhny Tagil Metallurgical Plant // Bulletin of the Ural State Mining University, 4(48), 42-45, DOI: 10.21440/2307-2091-2017-4-42-45

16. Messager M.L., Davies I.P., Levin P.S. (2021). Low-cost biomonitoring and high-resolution, scalable models of urban metal pollution // Science of The Total Environment, 767, 144280, DOI: 10.1016/j.scitotenv.2020.144280

17. Mostalygina L.V., Elizarova S.N., Kostin A.V. (2020). Sorption ability of mosses and lichens of the Trans-Urals in relation to lead ions // Chemistry of vegetable raw materials, 3, 315-321, DOI: 10.14258/jcpim.2020035605

18. Narayana A.C., Ismaiel M., Priju C.P. (2021). An environmental magnetic record of heavy metal pollution in Vembanad lagoon, southwest coast of India // Marine Pollution Bulletin. Т. 167, 112-344, DOI: 10.1016/j.marpolbul.2021.112344

19. Nuguyeva Sh.S., Mammadov E.A. (2021). Investigation of the content of heavy metals in atmospheric precipitation of the Goygol, Dashkesan and Gedabek regions of Azerbaijan // Bulletin of science and practice, 7(6), 60-66, DOI: 10.33619/2414-2948/67

20. Sheshukov O.Y., Mikheenkov M.A., Nekrasov I.V., Yeghiazaryan D. K. (2020). Negative effect of ferrous metallurgy new technologies on the environment and possible ways to overcome them // Journal of Chemical Technology and Metallurgy, 3(55), 592-597.

21. Sukhareva T.A. (2018). Elemental composition of green mosses in background and technogenically disturbed territories // Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta, 3(172), 89-96, DOI: 10.15393/uchz.art.2018.130

22. Tarkhanov S.N. (2016). Influence of aerotechnogenic pollution on the coverage of tree trunks by epiphytic lichens in forest plantations of the North Dvina basin and the Belomorsko-Kuloi plateau // Forest magazine, 1 (349), 37-47, DOI: 10.17238/issn0536-1036.2016.1.37

23. Varduni T.V., Minkina T.M., Gorbov S.N., Mandzhieva S.S. (2015). Analysis of the content of heavy metals in Pylaisia polyantha growing in Rostov-on-Don // Scientific journal of KubGAU, 2, 1-14.

24. Vasiliev A., Gorokhova S., Razinsky M. (2020). Technogenic magnetic particles in soils and ecological–geochemical assessment of the soil cover of an industrial city in the Ural, Russia // Geosciences (Switzerland), 10(11), 1-34, DOI: 10.3390/geosciences10110443

25. Vasiliev A.A., Lobanova E.S. (2015). Magnetic and geochemical assessment of the soil cover of the urbanized territories of the Cis-Urals on the example of the city of Perm // Perm: FGBOU VPO «Perm State Agricultural Academy», 243.

26. Vodyanitskii Yu.N. (2010). Iron minerals in urban soils // Soil Science, 12, 1519-1526.

27. Wang B., Zhang X., Zhao Y., Zhang M., Jia J. (2021). Spatial and temporal distribution of pollution based on magnetic analysis of soil and atmospheric dustfall in Baiyin city, northwestern China // International Journal of Environmental Research and Public Health, 18(4), 1681, DOI: 10.3390/ijerph18041681

28. Wedepohl K.H. (1995). The composition of the continental crust // Geochim. Cosmochim. Acta, 59(7), 1217-1232.

29. Winkler A., Caricchi С., Guidotti М., Owczarek М., Macrì Р., Nazzari М., Amoroso А., Di Giosa А., Listran S. (2019). Combined magnetic, chemical and morphoscopic analyses on lichens from a complex anthropic context in Rome, Italy // Science of the Total Environment, 690, 1355-1368, DOI: 10.1016/j.scitotenv.2019.06.526

30. Winkler A. (2020). Magnetic Emissions from Brake Wear are the Major Source of Airborne Particulate Matter Bioaccumulated by Lichens Exposed in Milan (Italy) // Applied Sciences, 10(6), 2073, DOI: 10.3390/app10062073

31. Zhang J., Lin Q., Liu В., Guan Y., Wang Y., Li D., Zhou Х., Kang Х. (2022). Magnetic Response of Heavy Metal Pollution in Soil of Urban Street Greenbelts // Polish Journal of Environmental Studies, 31(2), 1923-1933, DOI: 10.15244/pjoes/141339


Review

For citations:


Bobrova A.V., Vasil’ev A.A. Magnetic Particles In Soils And Epiphytes In The Zone Of Influence Of A Ferrous Metallurgy Factory In The City Of Perm. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2023;16(1):157-162. https://doi.org/10.24057/2071-9388-2022-058

Views: 652


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)