Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Inventory Of Landslides Triggered By Hurricane Matthews In Guantánamo, Cuba

https://doi.org/10.24057/2071-9388-2022-133

Abstract

Hurricane Matthew affected the eastern region of Cuba from October 4th to 5th causing large damages and numerous landslides. This research presents an inventory of landslides triggered by the hurricane. Visual interpretation of satellite images of moderate resolution from Sentinel 2A instrument and localized higher resolution satellite images provided by PlanetScope, as well as field research were the main sources of information. The resulting landslide inventory was compared with other landslide factors such as slope, geology, and soil deep and composition from maps at a scale of 1:100 000. Data recorded by 1-hour rain gauges and 24-hour rain gauge was also analyzed in order to identify rainfall thresholds for the occurrence of landslides during the Hurricane Matthew influence in the study region. A total of 619 landslides were identified and classified as rockslide, rockfall or debris flows. The research found the slope was not as important factor as the type of rock. Most of landslides were located in areas of green shale of volcanic and vulcanoclastic rocks and rocks of the ophiolitic complex formed by ancient remnants of oceanic crust. The accumulate rainfall threshold estimated for the event was between 178-407 mm/day.

About the Authors

G. B. Pospehov
Saint Petersburg Mining University
Russian Federation

21-Ya Liniya Vasil’yevskogo Ostrova, 2, St Petersburg, 199106



Y. Savón
Saint Petersburg Mining University
Russian Federation

21-Ya Liniya Vasil’yevskogo Ostrova, 2, St Petersburg, 199106



R. Delgado
Delegation of the Ministry of Science, Technology and Environment
Cuba

Ahogados e/ 12 y 13 north. No. 14. Guantánamo



E. A. Castellanos
Ministry of Energy and Mines
Cuba

Ave. Salvador Allende #666, Centro Habana, La Habana



A. Peña
Institute of Meteorology. Meteorological Center of Guantánamo
Cuba

13 North # 14 e/ 1 y el 2 west, Reparto Caribe, Guantánamo



References

1. Aleotti P. (2004). A warning system for rainfall-induced shallow failures. Engineering Geology, 73, 247-265, DOI:10.1016/j.enggeo.2004.01.007.

2. Aristizábal E. and Gómez J. (2007). Inventario de emergencias y desastres en el Valle de Aburrá. originados por fenómenos naturales y antrópicos en el periodo 1880-2007. Gestión y Ambiente, 10(2),17-30, https://revistas.unal.edu.co/index.php/gestion/article/view/1409.

3. Ariztizábal E. and Yokota S. (2006). Geomorfología aplicada a la ocurrencia de deslizamientos en el valle de aburra. DYNA, 73(149), 05-16. https://revistas.unal.edu.co/index.php/dyna/article/view/807.

4. Ayalew L. and Yamagishi H. (2005). The application of GISbased logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65, 15-31, DOI:10.1016/j.geomorph.2004.06.010.

5. Ballester M. and Rubiera J. (2016). Summary of cyclone season 2016 in North Atlantic, Institute of Meteorology (INSMET), Ministry of Science, Technology and Environment, Cuba, http://www.insmet.cu/asp/genesis.asp?TB0=PLANTILLAS&TB1=TEMPORADA&TB2=/Temporadas/temporada2016.html#home.

6. Bertinelli L., Mohan P. and Strobl E. (2016). Hurricane Damage Risk Assessment in the Caribbean: An Analysis Using Synthetic Hurricane Events and Nightlight Imagery. Ecological Economics, 124, 135-144, DOI:10.1016/j.ecolecon.2016.02.004.

7. Brown W.M., Cruden D.M. and Denison J.S. (1992). The directory of the world landslide inventory. USGS Open File Report 92 (427), 239.

8. Castellanos E.A. and Van Westen C.J. (2007). Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides, 4, 311-325, DOI:10.1007/s10346-007-0087-y.

9. Castellanos E.A. and Van Westen C.J. (2008). Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantánamo, Cuba, Geomorphology, 94(3-4), 453-466, DOI:10.1016/j.geomorph.2006.10.038.

10. Crosta G.B. (1998). Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environmental Geology, 35, 131-145, DOI:10.1007/s002540050300.

11. Crozier M.J. (1999). Prediction of rainfall-triggered landslide: a test of antecedent water status model. Earth surface processes and landforms, 24, 825-833, DOI:10.1002/(SICI)1096-9837(199908)24:9<825::AID-ESP14>3.0.CO;2-M.

12. Dai F., Lee C., Li J., and Xu Z.W. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40, 381-391, DOI:10.1007/s002540000163.

13. Dashko R.E. and Kotiukov P.V. (2018). Fractured clay rocks as a surrounding medium of underground structures: The features of geotechnical and hydrogeological assessment. Saint Petersburg, 1, 241–248, https://onepetro.org/ISRMEUROCK/proceedings-abstract/EUROCK18/All-EUROCK18/ISRM-EUROCK-2018-025/446888.

14. Dikshit A., Sarkar R., Pradhan B., Acharya S. and Dorji K. (2019). Estimating Rainfall Thresholds for Landslide Occurrence in the Bhutan Himalayas. Water 11, 1616, DOI: 10.3390/w11081616.

15. Finlay P.J., Fell R. and Maguire P.K. (1997). The relationship between the probability of landslide occurrence and rainfall. Canadian Geotechnical Journal, 36, 811–824, DOI:10.1139/t97-047.

16. Garland G.G. and Oliver M.J. (1993). Predicting landslides from rainfall in a humid, sub-tropical region. Geomorphology, 8, 165-173, DOI:10.1016/0169-555X(93)90035-Z.

17. Gospodarikov A.P., and Zatsepin M.A. (2010). Mathematical modeling of stress-strain state of the mined seam deposits. Journal of Mining Institute, 187, 47, https://pmi.spmi.ru/index.php/pmi/article/view/6623.

18. Gusev V.N. (2016). Forecasting safe conditions for developing coal bed suites under aquifers on the basis of geomechanics of technogenic water conducting fractures. Journal of Mining Institute, 221, 638, DOI:10.18454/pmi.2016.5.638.

19. Guzzetti F. (1998). Hydrological triggers of diffused landsliding. Environmental Geology, 2(35), 78-79.

20. Guzzetti F., Cardinalli M., and Reichenbach P. (1994.) The AVI project: a bibliographical and archive inventory of landslides and floods in Italy. Environmental Management, 18, 623-633, DOI: 10.1007/BF02400865.

21. Iturralde-Vinent M.A. (1998). Sinopsis de la Constitución Geológica de Cuba». Acta geológica hispánica, 33, 9-56, https://www.raco.cat/index.php/ActaGeologica/article/view/75545.

22. Kay J.N. and Chen T. (1995). Rainfall-landslide relationship for Hong Kong. Proceeding ICE. Geotechnical Engineering 113, 117-118, DOI: 10.1680/igeng.1995.27592.

23. Kleptsova O.S., Dijkstra H.A., van Westen R.M., van der Boog C.G., Katsman C.A., James R.K., Bouma T.J., Klees R., Riva E.M., Slobbe D.C.,

24. Zijlema M. and Pietrzak J.D. (2021). Impacts of Tropical Cyclones on the Caribbean Under Future Climate Conditions. Journal of Geophysical Research: Oceans, 126(9), e2020JC016869, DOI:10.1029/2020JC016869.

25. Kutepova N.A., Kutepov Y.I., and Shabarov A.N. (2012). Engineering-geological ensuring for safety of mining work in water-inundated solid mass. Journal of Mining Institute, 197, 197. извлечено от https://pmi.spmi.ru/index.php/pmi/article/view/5991.

26. Kutepova N.A., Kutepov Y.I., & Shabarov A.N. (2012). The monitoring of hidrogeomehanical processes during the flooding of Angero-Sudgensk mines. Journal of Mining Institute, 197, 215, https://pmi.spmi.ru/index.php/pmi/article/view/5994.

27. Lumb P. (1975). Slope failure in Hong Kong. Quarterly Journal Engineering Geologist, 8, 31–65, DOI: 10.1144/GSL.QJEG.1975.008.01.02.

28. Marcelino E.V., Fromaggio A.R. and Maeda E.E. (2009). Landslide inventory using image fusion techniques in Brazil, International Journal of Applied Earth Observation and Geoinformation, 11, 181-191, DOI: 10.1016/j.jag.2009.01.003.

29. Pospehov G.B., Straupnik I.A. and Pankratov K.V. (2018). Geoengineering researches for the restoration of the lands disturbed by mining. 14th Conference and Exhibition on Engineering and Mining Geophysics, vol. 2018, № 137600, 1-5, DOI: 10.3997/2214-4609.201800528.

30. Ranson M., Kousky C., Ruth M., Jantarasami L., Crimmins A. and Tarquinio L. (2014). Tropical and Extratropical Cyclone Damages under Climate Change. Climatic Change, 127(2), 227-41, DOI: 10.1007/s10584-014-1255-4.

31. Sarkar R. and Dorji K. (2019). Determination of the Probabilities of Landslide Events—A Case Study of Bhutan. Hidrology, 6(2), 52, DOI: 10.3390/hydrology6020052.

32. Stedinger J.R. (1993). Frequency analysis of extreme events. In: Maidment DR (ed) Handbook of Hydrology. McGraw-Hill: New York., 18.1-18.66.

33. Trushko V.L., and Protosenya A.G. (2019). Prospects of geomechanics development in the context of new technological paradigm. Journal of Mining Institute, 236, 162, DOI: 10.31897/pmi.2019.2.162.

34. Van Westen C.J., Castellanos E.A. and Kuriakose S.L. (2008). Spatial data for landslide susceptibility, hazard and vulnerability assessment: an overview. Engineering Geology, 102(3-4), 112-131, https://www.sciencedirect.com/science/article/abs/pii/S0013795208001786.


Review

For citations:


Pospehov G.B., Savón Y., Delgado R., Castellanos E.A., Peña A. Inventory Of Landslides Triggered By Hurricane Matthews In Guantánamo, Cuba. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2023;16(1):55-63. https://doi.org/10.24057/2071-9388-2022-133

Views: 816


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)