Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Changes In Land Use/ Cover And Water Balance Components During 1964–2010 Period In The Mono River Basin, Togo-Benin

https://doi.org/10.24057/2071-9388-2021-098

Full Text:

Abstract

The Intergovernmental Panel on Climate Change has predicted that sub-tropical regions are more vulnerable to climate change’s negative effects (CC). Additionally, to CC, land use and land cover (LULC) changes and dam construction, often neglected, play an important role in the spatial and temporal distribution of water balance components (WBC) for agricultural production and socio-ecological equilibrium. This study aimed to analyze and compare the changes in LULC and WBC for the period before Nangbéto dam construction (1964–1986) and the period after its construction (1988–2010) in the Mono River Basin (MRB). To this end, the study used mainly WBC extracted from the validated Soil and Water Assessment Tool and LULC data of 1975–2000 in the MRB to explore their temporal distributions and the link in their changes. The results showed that mean actual monthly evapotranspiration, percolation, water yield, surface runoff, groundwater, and lateral flow represent 51%, 17.5%, 15.9%, 9.4%; 5.7% and 0.4%, respectively, of total water balance between 1964 and 1986. The same components represented 51%, 9.1%, 20.4%, 6.3%, 10.6% and 2.6%, respectively, between 1988 and 2010. The contribution of these WBC in the mean-annual (1964–1986) period was for actual evapotranspiration (31.3%), water yield (25.9%), percolation (17.7%), groundwater (14.71%), surface runoff (9.94%) and lateral flow (0.40%). Meanwhile, between 1988 and 2010, the contribution of actual evapotranspiration, water yield, percolation, groundwater, surface runoff and lateral flow is 49.8%,19.9%, 11.2%, 10.3%, 6.1%, and 2.5%, respectively. The results showed that the peaks of the actual evapotranspiration, surface runoff, percolation and water yield appeared in September, corresponding to a month after the maximum rainfall in August. However, our more detailed analysis showed that a significant decrease in forest and savanna and an increase in croplands led to a decrease in actual evapotranspiration and lateral flow over the second simulation period compared to the first period of simulation over the MRB scale. These findings showed that sustainable management and conservation of natural vegetation are crucial for integrated water resource management and conservation in MRB.

About the Authors

Djan’na K. Houteta
Institut Togolais de Recherche Agronomique (ITRA); Université de Lomé; West Africa Science Service Centre on Climate change and Adapted Land Use, WASCAL-Climate Change and Water Resources, University of Abomey Calavi; African Institute for Mathematical Sciences (AIMS)
Togo

Faculté Des Sciences, Université de Lomé

Lomé 01BP 1163, 

01B:P 1515 Lomé,

03 PO Box 526 Cotonou,

Kigali



Kossi Atchonouglo
Université de Lomé
Togo

Faculté Des Sciences

01B:P 1515 Lomé



Julien G. Adounkpe
West Africa Science Service Centre on Climate change and Adapted Land Use, WASCAL-Climate Change and Water Resources, University of Abomey Calavi
Benin

03 PO Box 526 Cotonou



Badabate Diwediga
Université de Lomé; UNEP-IEMP, Institute of Geographical Science and Natural Resources Research, The University of Chinese Academy of Science (CAS)
Togo

Laboratoire de Botanique et Ecologie Végétale, Faculté des Sciences, Université de Lomé

Lomé 01 BP 1515, 

11A Datun Road, Beijing



Yao Lombo
Institut Togolais de Recherche Agronomique (ITRA)
Togo

Lomé 01BP 1163



Kossi E. Kpemoua
Institut Togolais de Recherche Agronomique (ITRA)
Togo

Lomé 01BP 1163



Komi Agboka
West Africa Science Service Centre on Climate change and Adapted Land Use, WASCAL-Climate Change and Disease Risk Management, University of Lomé
Togo

01 PO Box 1515 Lomé



References

1. Abbaspour K.C., Vaghefi S.A., Srinivasan R. (2017). A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 10, 1-18, DOI:10.3390/w10010006.

2. Ahmad A., Quegan S. (2012). Analysis of Maximum Likelihood Classification Technique on Landsat 5 TM Satellite Data of Tropical Land Covers.

3. Akpoti K., Antwi E.O., Kabo-bah A. (2016). Impacts of Rainfall Variability , Land Use and Land Cover Change on Stream Flow of the Black Volta, West Africa. Hydrology 3, 1–24, DOI: 10.3390/hydrology3030026.

4. Anderson E.P., Encalada A.C., Maldonado-Ocampo J.A., Mcclain M.E., Ortega H., Wilcox, B.P., (2011). Environmental Flows: a Concept for Addressing Effects of River Alterations and Climate Change in the Andes. Clim. Chang. Biodivers. Trop. Andes 326-338.

5. Arnold J.G., Srinivasan R., Muttiah R.S., Williams J.R., Arnold J.G., Bednarz S.T., Srinivasan R. (1998). Large Area Hydrologic Modeling and Assessment Part I : Model Development. J. Am. Water Resour. Assoc. 34, 73-89, DOI: 10.1111/j.1752-1688.1998.tb05961.x.

6. Atsri K.H., Konko Y., Cuni-Sanchez A., Abotsi K.E. (2018). Changes in the West African forest-savanna mosaic, insights from central Togo. PLoS One 13, 10, DOI: 10.1371/journal.pone.0203999.

7. Badjana H.M., Fink M., Helmschrot J., Diekkrüger B., Kralisch S., Afouda A.A., Wala K. (2017). Hydrological system analysis and modelling of the Kara River basin (West Africa) using a lumped metric conceptual model. Hydrol. Sci. J. 62, 1094-1113, DOI: 10.1080/02626667.2017.1307571.

8. Begou J.C., Jomaa S., Benabdallah S., Bazie P. (2016). Multi-Site Validation of the SWAT Model on the Bani Catchment : Model Performance and Predictive Uncertainty. Water 8, 178, DOI: 10.3390/w8050178.

9. Bronstert A., Niehoff D., Gerd B. (2002). Effects of climate and land-use change on storm runoff generation: present knowledge and modelling capabilities. Hydrol. Process. 529, 509-529, DOI: 10.1002/hyp.326.

10. CILSS (2016). Landscapes of West Africa- A Window on a Changing World. 47914 252nd St, Garretson, SD 57030, UNITED STATES.

11. Cornelissen T., Diekkrüger B., Giertz S. (2013). A comparison of hydrological models for assessing the impact of land use and climate change on discharge in a tropical catchment. J. Hydrol. 498, 221-236, DOI: 10.1016/j.jhydrol.2013.06.016.

12. Deschenes L.A., Bout D.A. Vanden (2000). Origin 6.0: Scientific Data Analysis and Graphing Software Origin Lab Corporation (formerly Microcal Software, Inc.). Web site: www. originlab. com. Commercial price: 595.Academicprice: 446.

13. Descroix L., Mahé G., Lebel T., Favreau G., Galle S., Gautier E., Olivry J.-C., Albergel J., Amogu O., Cappelaere B., Dessouassi R., Diedhiou A., Le Breton E., Mamadou I., Sighomnou, D. (2009). Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: A synthesis. J. Hydrol. 375, 90-102, DOI: 10.1016/j.jhydrol.2008.12.012.

14. Djaman K., Sharma V., Rudnick D.R., Koudahe K., Irmak S., Amouzou K.A., Sogbedji J.M. (2017). Spatial and Temporal Variation in Precipitation in Togo. Int. J. Hydrol. 1, 1-10, DOI: 10.15406/ijh.2017.01.00019.

15. dos R. Pereira D., Martinez M.A., Pruski F.F., da Silva D.D. (2016). Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: Calibration and validation tests. J. Hydrol. Reg. Stud. 7, 14-37, DOI: 10.1016/j.ejrh.2016.05.002.

16. Eusebion I.-B., Zong-Liang Y. (2008). Climate Change Impacts on the Water Resources. GEO 387H – Phys. Climatol. 26.

17. Gaba O.U.C., Biao I.E.E., Alamou A.E., Afouda A.A. (2015). An Ensemble Approach Modelling to Assess Water Resources in the Mékrou Basin , Benin. Hydrology 3, 22-32, DOI: 10.11648/j.hyd.20150302.11.

18. Gassman P.P.W., Reyes M.M.R., Green C.C.H., Arnold J.J.G. (2007). The Soil and Water Assessment Tool : historical development, applications, and future research directions. Trans. ASAE 50, 1211-1250, DOI: 10.1.1.88.6554.

19. Ghaffari G., Keesstra S., Ghodousi J., Ahmadi H. (2010). SWAT-simulated hydrological impact of land-use change in the Zanjanrood basin, Northwest Iran. Hydrol. Process. An Int. J. 24, 892-903.

20. Ghoraba S.M. (2015). Hydrological modeling of the Simly Dam watershed ( Pakistan ) using GIS and SWAT model. Alexandria Eng. J. 54, 583-594, DOI: 10.1016/j.aej.2015.05.018.

21. Giertz S., Diekkrüger B., Steup G. (2006). Physically-based modelling of hydrological processes in a tropical headwater catchment (West Africa) – process representation and multi-criteria validation. Hydrol. Earth Syst. Sci. 10, 829-847.

22. Gonzalez-Barahona J.M., Robles G., Andradas-Izquierdo R., Ghosh R.A. (2008). Geographic origin of libre software developers. Inf. Econ. Policy 20, 356-363.

23. Hagemann S., Blome T., Saeed F., Stacke T. (2014). Perspectives in Modelling Climate-Hydrology Interactions. Surv. Geophys. 35, 739-764, DOI: 10.1007/s10712-013-9245-z.

24. Hanjra M.A., Qureshi M.E. (2010). Global water crisis and future food security in an era of climate change. Food Policy 35, 365-377, DOI: 10.1016/j.foodpol.2010.05.006.

25. Hargreaves G.H., Samani Z.A. (1982). Estimating potential evapotranspiration. J. Irrig. Drain. Div. 108, 225-230.

26. Houngue N.R. (2018). Assessment of mid-century climate change impacts on Mono river’s downstream inflows. Master thesis, Department of Geography, Université de Lomé, Togo, defended in January, 2018.

27. Hounkpè J. (2016). Assessing the climate and land use changes impacts on flood hazard in Ouémé River Basin, Benin (West Africa). Doctor of Philosophy (Ph.D) thesis in Climate Change and Water Resources at University of Abomey Calavi (Benin Republic); Date of defense: 05 September 2016.

28. Huisman J.A., Breuer L., Bormann H., Bronstert A., Croke B.F.W., Frede H.G., Gräff T., Hubrechts L., Jakeman A.J., Kite G., Lanini J., Leavesley G., Lettenmaier D.P., Lindström G., Seibert J., Sivapalan M., Viney N.R., Willems P. (2009). Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III: Scenario analysis. Adv. Water Resour. 32, 159-170, DOI: 10.1016/j.advwatres.2008.06.009.

29. Huntington T.G. (2006). Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 319, 83-95, DOI: 10.1016/j.jhydrol.2005.07.003.

30. Kissi A.E., Abbey G.A., Agboka K., Egbendewe A. (2015). Quantitative Assessment of Vulnerability to Flood Hazards in Downstream Area of Mono Basin, South-Eastern Togo: Yoto District. J. Geogr. Inf. Syst. 7, 607-619, DOI: 10.4236/jgis.2015.76049.

31. Klassou K.S., Komi K. (2021). Analysis of extreme rainfall in Oti River Basin (West Africa). J. Water Clim. Chang. 12, 1997–2009, DOI: 10.2166/wcc.2021.154.

32. Koglo Y.S., Agyare W.A., Diwediga B., Sogbedji J.M., Adden A.K., Gaiser T. (2018). Remote Sensing-Based and Participatory Analysis of Forests, Agricultural Land Dynamics, and Potential Land Conservation Measures in Kloto District (Togo, West Africa). Soil Syst. 2, Pages 1-11, DOI: 10.3390/soilsystems2030049.

33. Koubodana H.D. (2020). Modeling the Impacts Of Climate Change, Land Use Change And Dam Management On Water Resource In West Africa: Case Of The Mono River Basin, Togo-Benin. PhD Thesis, Graduate Research Program on Climate Change and Water Resources ,University of Abomey Calavi, Benin; defense date: February, 2020.

34. Koubodana H.D., Adounkpe J., Tall M., Amoussou E., Atchonouglo K., Mumtaz M. (2020). Trend Analysis of Hydroclimatic Historical Data and Future Scenarios of Climate Extreme Indices over Mono River Basin in West Africa. Am. J. Rural Dev. 8, 37-52, DOI: 10.12691/ajrd-8-1-5.

35. Koubodana H.D., Adounkpe J.G., Atchonouglo K., Djaman K., Larbi I., Lombo Y., Kpemoua K.E. (2021). Modelling of streamflow before and after dam construction in the Mono River Basin in Togo-Benin, West Africa. Int. J. River Basin Manag. 0, 1-17, DOI: 10.1080/15715124.2021.1969943.

36. Koubodana H.D., Diekkrüger B., Näschen K., Adounkpe J., Atchonouglo K. (2019). Impact of the Accuracy of Land Cover Data Sets on the Accuracy of Land Cover Change Scenarios in the Mono River Basin, Togo, West Africa. Int. J. Adv. Remote Sens. GIS 8, 3073-3095, DOI: 10.23953/cloud.ijarsg.422.

37. Kumi M A.A. (2015). Predicting Hydrological Response to Climate Change in the White Volta Catchment, West Africa. J. Earth Sci. Clim. Change 06, 1-7, DOI: 10.4172/2157-7617.1000249.

38. Laux P., Wagner S., Wagner A., Jacobeit J., B, A. (2009). Modelling daily precipitation features in the Volta Basin of West Africa. Int. J. Climatol. 29, 937-954, DOI: 10.1002/joc.

39. Lawin A.E., Hounguè N.R., Biaou C.A., Badou D.F. (2019). Statistical Analysis of Recent and Future Rainfall and Temperature Variability in the Mono River Watershed (Benin, Togo). Climate 7, 8, DOI: 10.3390/cli7010008.

40. Liu Y., Gupta H.V. (2007). Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour. Res. 43.

41. Mango L.M., Melesse A.M., Mcclain M.E., Gann D., Setegn S.G., Melesse A.M., Mcclain M.E., Gann D., Setegn S.G. (2011). Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: results of a modeling study to support better resource management. Hydrol. Earth Syst. Sci. 15, 2245-2258, DOI: 10.5194/hess-15-2245-2011.

42. Nonki, R.M., Lenouo, A., Tshimanga, R.M., Donfack, F.C., Tchawoua, C., 2021. Performance assessment and uncertainty prediction of a daily time-step HBV-Light rainfall-runoff model for the Upper Benue River Basin, Northern Cameroon. J. Hydrol. Reg. Stud. 36, 100849.

43. Ntajal J., Lamptey B.L., Mahamadou I.B., Nyarko B.K. (2017). Flood Disaster Risk Mapping in the Lower Mono River Basin in Togo, West. Int. J. Disaster Risk Reduct. 23, 93-103, DOI: 10.1016/j.ijdrr.2017.03.015.

44. Oguntunde P.G., Friesen J., Giesen N. Van De, Savenije H.H.G. (2006). Hydroclimatology of the Volta River Basin in West Africa: Trends and variability from 1901 to 2002. Phys. Chem. Earth, Parts A/B/C 31, 1180-1188, DOI: 10.1016/j.pce.2006.02.062.

45. Omotosho J.B., Abiodun B.J. (2007). A numerical study of moisture build-up and rainfall over West Africa 225, 209-225, DOI: 10.1002/met.

46. Paeth H., Born K., Girmes R., Podzun R., Jacob D. (2009). Regional climate change in tropical and Northern Africa due to greenhouse forcing and land use changes. J. Clim. 22, 114-132, DOI: 10.1175/2008JCLI2390.1.

47. PCCP (2008). Programme PCCP-from Potential Conflict to Cooperation Potential: cas du basin du Mono(Togo-Benin). Lomé-Togo.

48. Philipp S., Kling H., Bauer H. (2018). Climate change impact on West African rivers under an ensemble of CORDEX climate projections. Clim. Serv. 11, 36-48, DOI: 10.1016/j.cliser.2018.05.003.

49. Rossi G. (1996). L’impact des barrages de la vallée du Mono (Togo-Benin). La gestion de l’incertitude. Géomorphologie Reli. Process. Environ. 2, 55-68, DOI: 10.3406/morfo.1996.878.

50. Sathian K., Symala P. (2009). Application of GIS integrated SWAT model for basin level water balance. Indian J. Soil Cons 37, 100-105.

51. SAWES (2011). Rapport final Etat des lieux bassin Mono. Aougadougou, Burkina Faso.

52. Sciuto G., Diekkrüger B. (2010). Influence of Soil Heterogeneity and Spatial Discretization on Catchment Water Balance Modeling Simulaon Model. Vadose Zo. J. 9, 955-969, DOI: 10.2136/vzj2009.0166.

53. Setyorini A., Khare D., Pingale S.M. (2017). Simulating the impact of land use/land cover change and climate variability on watershed hydrology in the Upper Brantas basin, Indonesia. Appl. Geomatics 9, 191-204, DOI: 10.1007/s12518-017-0193-z.

54. Speth P., Christoph M., Diekkrüger B. (2010). Impacts of Global Change on the Hydrological Cycle in West and Northwest Africa, Springer S. ed. Springer Berlin Heidelberg, DOI: 10.1007/978-3-642-12957-5_1.

55. Sylla M.B., Nikiema P.M., Gibba P., Kebe I., Ama N., Klutse B. (2016). Climate Change over West Africa: Recent Trends and Future Projections, in: Hesselberg, J.A.Y. and J. (Ed.), Adaptation to Climate Change and Variability in Rural West Africa. Springer International Publishing, 25-40, DOI: 10.1007/978-3-319-31499-0.

56. Tramblay Y., Amoussou E., Dorigo W., Mahé G. (2014). Flood risk under future climate in data sparse regions: Linking extreme value models and flood generating processes. J. Hydrol. 519, 549-558, DOI: 10.1016/j.jhydrol.2014.07.052.

57. Verstraeten W., Veroustraete F., Feyen J. (2008). Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation. Sensors 8, 70-117.

58. Wagner S., Kunstmann H., Bárdossy A., Conrad C., Colditz R.R. (2009). Water balance estimation of a poorly gauged catchment in West Africa using dynamically downscaled meteorological fields and remote sensing information. Phys. Chem. Earth 34, 225-235, DOI: 10.1016/j.pce.2008.04.002.

59. Wijesekara G.N., Gupta A., Valeo C., Hasbani J.-G., Qiao Y., Delaney P., Marceau D.J. (2012). Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada. J. Hydrol. 412, 220-232.

60. Yabi I., Afouda F. (2012). Extreme rainfall years in Benin ( West Africa ). Quat. Int. 262, 39-43, DOI: 10.1016/j.quaint.2010.12.010.

61. Zhong-min L., Rong D.A.I., Bin-quan L.I. (2010). A review of hydrological uncertainty analysis based on Bayesian theory. 21, 274-281.

62. Zuo D., Xu Z., Yao W., Jin S., Xiao P., Ran D. (2016). Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci. Total Environ. 544, 238-250.


Review

For citations:


Houteta D.K., Atchonouglo K., Adounkpe J.G., Diwediga B., Lombo Y., Kpemoua K.E., Agboka K. Changes In Land Use/ Cover And Water Balance Components During 1964–2010 Period In The Mono River Basin, Togo-Benin. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2022;15(4):171-180. https://doi.org/10.24057/2071-9388-2021-098

Views: 44


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)