Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Climate-Related Gradients On Vegetation Diversity Of The Altai-Sayan Orobiome (Southern Siberia)

https://doi.org/10.24057/2071-9388-2022-043

Full Text:

Abstract

An analysis of the spatial organization of vegetation cover has been carried out for the Altai-Sayan orobiome in connection with climatic conditions in the Southern Siberian mountains based on original relevés of plant communities at the 4 altitudinal spectra. Basic bioclimatic parameters on the altitudinal spectra of vegetation have been determined according to latitudinal and longitudinal differentiation of climate. Correlation and discriminate analyses allowed to identify the regional features of altitudinal gradients in species diversity of the spectra as well as the role of parameters in the structure of typological diversity of vegetation for belts of high-mountain tundra, alpine and subalpine meadows and sparse forests, dark coniferous mountain taiga forests, chern-taiga forests, small leave – light coniferous subtaiga forests, forest-steppe. A compiled bioclimatic scheme characterizes the spatial organization of orobiome’s vegetation by basic bioclimatic parameters on the regional level (continentality index, average temperature of January). This scheme shows regional features of the diversity of vegetation in Southern Siberia, in adjacent plain and mountain regions according to climatic conditions. Identified patterns determine unity of the Altai-Sayan orobiome as well as regional differentiation that reflected on the development of types of vegetation zonality. They can be used to analysis of vegetation forming in different mountain systems.

About the Author

Maxim V. Bocharnikov
Lomonosov Moscow State University
Russian Federation

Leninskie gory, 1, Moscow, 119991



References

1. Alberto F.J., Aitken S.N., Alia R., Gonzalez-Martinez S.C., Hänninen H., Kremer A., Lefevre F., Lenormand T., Yeaman S., Whetten R. and Savolainen O. (2013). Potential for evolutionary responses to climate change-evidence from tree populations. Glob. Change Biol., 19, 1645-1661, DOI: 10.1111/gcb.12181.

2. Aynekulu E., Aerts R., Moonen P.E., Denich M., Gebrehiwot K., Vågen T., Mekuria W. and Boehmer H. J. (2012). Altitudinal variation and conservation priorities of vegetation along the Great Rift Valley escarpment, northern Ethiopia. Biodivers. Conserv, 21, 2691-2707, DOI: 10.1007/s10531-012-0328-9.

3. Bocharnikov M.V. (2015). Eco-ptytocoenotic structure of the forest cover on the northern macroslope of Western Sayan. Lesovedenie, 1, 10-19 (in Russian with English abstract).

4. Bocharnikov M.V., Ogureeva G.N. and Jargalsaikhan L. (2018). Regional features of the altitudinal gradients in Northern Transbaikalia vegetation cover. Geography, Environment, sustainability, 11(4), 67-84, DOI: 10.24057/2071-9388-2018-11-4-67-84.

5. Bocharnikov M.V. (2019). Role of climate in the spatial structure of vegetation of the Kodar-Kalar orobiome. Contemp. Probl. Ecol., 12, 193- 203, DOI: 10.1134/S1995425519030028.

6. Bocharnikov M.V. (2021). Species distribution in cenofloras of the cryophytic steppes and cushion plants with the participation of Stellaria pulvinata Grub. in the Mongolian Altai. Arid Ecosystems, 11, 1, 52-61, DOI: 10.1134/S2079096121010042.

7. Bueno M.L., Rezende V.L., De Paula L.F. A., Meira-Neto J.A.A., Pinto J.R.R., Neri A.V.and Pontara V. (2021). Understanding how environmental heterogeneity and elevation drives the distribution of woody communities across vegetation types within the campo rupestre in South America. Journal of Mountain Science, 18, 1192-1207, DOI: 10.1007/s11629-020-6125-0.

8. Chytry M., Danihelka J., Kubešová S., Lustyk P., Ermakov N., Hájek M., HajkovanP., Kočí M., Otypková Z., Roleček J., Řezníčková M., Šmarda P., Valachovič M., Popov D. and Pišút I. (2007). Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecology, 196, 61-83, DOI: 10.1007/s11258-007-9335-4.

9. Clarke K.R. (1993). Non-parametric multivariate analyses of changes in community structure. Austral. J. Ecol., 18, 117-143, DOI: 10.1111/J.1442-9993.1993.TB00438.X.

10. Currie D.J. and Paquin V. (1987). Large-scale biogeographical patterns of species richness in trees. Nature, 329, 32-327, DOI: 10.1038/329326A0.

11. De Dios V.R., Fischer C. and Colinas C. (2007). Climate change effects on Mediterranean forests and preventive measures. New Forests, 33, 29-40, DOI: 10.1007/s11056-006-9011-x.

12. Del Rio S. and Penas A. (2006). Potential distribution of semi-deciduous forests in Castile and Leon (Spain) in relation to climatic variations // Plant Ecology, 185, 269-282, DOI: 10.1007/s11258-006-9103-x.

13. Dolezal J. and Srutek M. (2002). Altitudinal changes in composition and structure of mountain-temperate vegetation: a case study from the Western Carpathians. Plant Ecology, 158, 2, 201-221, DOI: 10.1023/A:1015564303206.

14. Drobushevskaya O.V. and Nazimova D.I. (2006). Climatic variants of the light-coniferous low-mountain subtaiga in Southern Siberia. Geography and Natural Resources, 2, 21-27 (in Russian with English abstract).

15. Ermakov N.B. (2003). Diversity of boreal vegetation in North Asia. Hemiboreal forests. Classification and ordination. Novosibirsk, 232. (in Russian).

16. Fick S.E. and Hijmans R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas // International Journal of Climatology, 37, 4302-4315, DOI: 10.1002/JOC.5086.

17. Francis A.P. and Currie D.J. (2003). A globally consistent richness-climate relationship for angiosperms. American Naturalist, 161, 523-536, DOI: 10.1086/368223.

18. Grebenshchikov O.S. (1974). An essay of climatic characteristics for the main plant formations of the Caucasus. Botanical journal, 59, 2, 161- 173 (in Russian).

19. Holdridge L.R. (1967). Life zone ecology. San Jose: Tropical Science Center, 206.

20. Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., Zimmermann N. E., Linder H. P. and Kessler M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 170122, DOI: 10.5061/dryad.kd1d4.

21. Kolomyts E.G. (1966). Snow cover of mountain taiga landscapes of Northern Transbaikalia. Moscow-Leningrad, 184. (in Russian).

22. Kuminova A.V. (1960). The vegetation cover of the Altai. Novosibirsk, 450. (in Russian).

23. Mokarram M. and Sathyamoorthy D. (2015). Modeling the relationship between elevation, aspect and spatial distribution of vegetation in the Darab Mountain, Iran using remote sensing data. Model. Earth Syst. Environ., 1, 30, DOI: 10.1007/s40808-015-0038-x.

24. Morozova O.V. (2011). Spatial trends in the taxonomic richness of the vascular plant flora. Biosfera 3(2), 190-207 (in Russian with English abstract).

25. Nakamura Y., Krestov P. V. and Omelko A. M. (2007). Bioclimate and vegetation complexes in Northeast Asia: first approximation to an integrated study. Phytocoenologia, 37, 3-4, 443-470, DOI: 10.1127/0340-269X/2007/0037-0443.

26. Namzalov B.B. (2020). Extrazonal Steppe Phenomena in the Mountains of Southern Siberia: Features of Spatial Organization and Centers of the Latest Speciation and Cenogenesis. Contemp. Probl. Ecol., 13, 495-504, DOI: 10.1134/S199542552005008X.

27. Navarro-Racines C., Tarapues J., Thornton P., Jarvis A. and, Ramirez-Villegas J. (2020). High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Scientific Data, 7, 7, DOI: 10.1038/s41597-019-0343-8.

28. Nazimova D.I. (1967). Relics of nemoral flora in the forests of the Western Sayan. Lesovedeniye, 3, 76-88 (in Russian).

29. Nazimova D.I. (1975). Mountain dark coniferous forests of the Western Sayan: an experience of ecological-phytocenotic classification. Leningrad, 119. (in Russian).

30. Nazimova D.I., Danilina D.M. and Stepanov N.V. (2014). Biodiversity of rain-barrier forest ecosystems of the Sayan mountains // Botanica Pacifica. A journal of plant science and conservation, 3(1), 39-47, DOI: 10.17581/bp.2014.03104.

31. Nazimova D.I., Ermakov N.B., Andreeva N.M. and Stepanov N.V. (2004). Conceptual model of structural biodiversity of zonal forests in North Eurasian forests. Contemp. Probl. Ecol., 5, 745-755 (in Russian with English abstract).

32. Nazimova D.I., Korotkov I.A. and Cherednikova Y.S. (1987). The main altitudinal-belt divisions of the forest cover in the mountains of Southern Siberia and their diagnostic features. Lectures in Commemoration of V.N. Sukachev. Moscow, 30-64 (in Russian).

33. Nazimova D.I., Ponomarev E.I., Stepanov N.V. and Fedotova E.V. (2005). Chern dark coniferous forests in southern Krasnoyarsk krai and problems of their general mapping. Lesovedeniye, 1, 12-18 (in Russian with English abstract).

34. Odland A. (2009). Interpretation of altitudinal gradients in South Central Norway based on vascular plants as environmental indicators. Ecological Indicators, 9(3), 409-421, DOI: 10.1016/j.ecolind.2008.05.012.

35. Ogureeva G.N. (1980). Botanical geography of Altai. Moscow, 192. (in Russian).

36. Ogureeva G.N. (1991). Botanical and geographical zoning of the USSR. Moscow, 78. (in Russian).

37. Ogureeva G.N. (1997). Structure and dynamics of high mountain ecosystems of Mongolian Altai. Arid ecosystems, 3, 6-7, 119-133 (in Russian with English summary).

38. Ogureeva G.N. and Bocharnikov M.V. (2017). Orobiomes as the basic units of the regional evaluation of the mountain region biodiversity. Ecosystems: Ecology and Dynamics, 1, 2, 52-81 (in Russian with English abstract).

39. Ogureeva G.N., Miklyaeva I.M., Safronova I.N. and Yurkovskaya T.K. (1999). Zones and types of altitudinal zonation of vegetation of Russia and adjacent territories. Scale 1: 8 000 000. Moscow.

40. Otto-Bliesner B.L., Brady E.C., Clauzet G., Tomas R., Levis S. and Kothavala Z. (2006). Last glacial maximum and Holocene climate in CCSM3. Journal of Climate, 19, 11, 2526-2544, DOI: 10.1175/JCLI3748.1.

41. Polikarpov N.P., Chebakova N.M. and Nazimova D.I. (1986). Climate and mountain forests of Southern Siberia. Novosibirsk, 225. (in Russian).

42. Qian H., Fridley J.D. and Palmer M.W. (2007). The latitudinal gradient of species-area relationship for vascular plants of North America // American Naturalist, 170, 5, 690-701.

43. Guo Q., Kelt D., Sun Z., Liu H., Hu L., Ren H. and Wen J. (2013). Global variation in elevational diversity patterns // Scientific Reports, 8, 1-7, DOI: 10.1038/srep03007.

44. Rahman I.U., Khan N., Ali K. and Ahmad S. (2020). Vegetation-environment relationship in Pinus wallichiana forests of the Swat Hindukush range of Pakistan. J. For. Res., 31, 185-195, DOI: 10.1007/s11676-018-0864-6.

45. Ramachandran R.M., Roy P.S., Chakravarthi V., Joshi P.K., Sanjay J. (2020). Land use and climate change impacts on distribution of plant species of conservation value in Eastern Ghats, India: a simulation study. Environmental Monitoring and Assessment, 192, 86, DOI: 10.1007/s10661-019-8044-5

46. Rivas-Martinez S., Penas A. and Diaz T.E. (2004). Bioclimatic map of Europe, thermoclimatic belts. Cartographic Service. University of Leon, Spain.

47. Rivas-Martinez S., Rivas Saenz S. and Penas A. (2011). World-wide bioclimatic classification system. Global Geobotany, 1(1), 1-634.

48. Sang W. (2009). Plant diversity patterns and their relationships with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China. Ecological Research, 24, 303-314, DOI: 10.1007/s11284-008-0507-z.

49. Sedel’nikov V.P. (1988). High mountain vegetation of the Altai-Sayan mountainous region. Novosibirsk, 222. (in Russian).

50. Shao G. and Halpin P.N. (1995). Climatic controls of Eastern North American coastal tree and shrub distributions. Journal of Biogeography, 22, 6, 1083-1089, DOI: 10.2307/2845837.

51. Sochava V.B. (1980). Geographical aspects of the Siberian taiga. Novosibirsk, 256. (in Russian).

52. Stepanov N.V. (2012). Endemism of boreal rainforest region of the Sayan mountains. Abstracts of the symposium The East Asian Flora and its role in the formation of the world’s vegetation. Vladivostok, 85.

53. Sukachov V.N. and Zonn S.V. (1961). Methodical instructions for the study of forest types. Moscow, 144. (in Russian).

54. Svenning C., Gravel D., Holt R. D., Schurr F. M., Thuiller W., Münkemüller T., Schiffers K.H., Dullinger S., Edwards T.C., Hickler J.T., Higgins S.I., Nabel J.E.M.S., Pagel J. and Normand S. (2014). The influence of interspecific interactions on species range expansion rates. Ecography, 37, 1198- 1209, DOI: 10.1111/j.1600-0587.2013.00574.x.

55. Tolmachev A.I. (1948). The main ways of vegetation formation in high-mountain landscapes of the northern hemisphere. Botanical journal, 33, 2, 161-180 (in Russian).

56. Tuhkanen S. (1984). A circumboreal system of climatic-phytogeographical regions. Acta Botanica Fennica 127, 1-50.

57. Walter H. and Breckle S.-W. (1991). Okologishe Grundlagen in global sicht. Stuttgart: G. Fischer, 586, DOI: 10.1007/BF02902905.

58. Whittaker R.J., Willis K.J. and Field R. (2001). Scale and species richness: towards a general hierarchical theory of species diversity. Journal of Biogeography, 28, 453-470, DOI: 10.1046/J.1365-2699.2001.00563.X.

59. Yang Y., Wang H., Harrison S.P., Prentice I.C., Wright I.J., Peng C. and Lin G. (2019). Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytologist, 221, 1, 155-168, DOI: 10.1111/nph.15422.

60. Zheng X., Zhu J. (2017). A new climatic classification of afforestation in Three-North regions of China with multi-source remote sensing data. Theoretical and Applied Climatology. 127, 465-480, DOI: 10.1007/s00704-015-1646-0

61. Zhu Y., Jiang Y., Liu Q., Kang M., Spehn E.M. and Korner C. (2009). Elevational trends of biodiversity and plant traits do not converge – a test in the Helan Range, NW China. Plant Ecology, 205, 273-283, DOI: 10.1007/s11258-009-9616-1.


Review

For citations:


Bocharnikov M.V. Climate-Related Gradients On Vegetation Diversity Of The Altai-Sayan Orobiome (Southern Siberia). GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2022;15(4):17-31. https://doi.org/10.24057/2071-9388-2022-043

Views: 49


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)