Identifying Climate Change Impacts On Hydrological Behavior On Large-Scale With Machine Learning Algorithms
https://doi.org/10.24057/2071-9388-2022-087
Abstract
The article presents the results of study of the application of machine learning methods to the problem of classification and identification of different river water regimes in a large region – the European territory of Russia. An accumulation of hydrological observation data for the 60 – 80 years makes it possible to create an information basis for such studies. The article uses information on the average monthly runoff at 351 hydrological gauges during the period from 1945 to 2018. The most widely used data clustering approaches were used as analysis methods – K-means, EM-method, agglomerative hierarchical clustering, DBSCAN algorithms and the application of gradient boosting methods (CATBUST). Clustering and classification algorithms were given eight parameters as a basis for prediction. It was found that the most distinct and stable clusters are formed with three parameters, and the highest silhouette coefficient (SS = 0,3-0,5) is obtained using the numbers for months of the maximum and minimum runoff and the ratio of the maximum to the minimum water flow. The best result gives DBSCAN (SS = 0,6 – 0,7). Supervised classification models also show high correspondence with the reference classification, with an accuracy of 87%. Both clustering methods and classification methods showed a shift of clusters representing southern water regimes. In the central region these regimes expanded by a 1000 km to the north. Furthermore, results demonstrate that currently available data already makes it possible to apply machine learning methods to the analysis of hydrological data. Clusters corresponding to different types of water regime can be obtained by utilizing contemporary clustering algorithms. The study shows that over the past 40 years, the southern types of water regimes have noticeably shifted to the north.
About the Authors
Aleksander M. IvanovRussian Federation
Leninskie Gory – ГСП-1, Moscow, 119991
Artem V. Gorbarenko
Russian Federation
Leninskie Gory – ГСП-1, Moscow, 119991
Maria B. Kireeva
Russian Federation
Leninskie Gory – ГСП-1, Moscow, 119991
Elena S. Povalishnikova
Russian Federation
Leninskie Gory – ГСП-1, Moscow, 119991
References
1. Ayzel G. (2021). Machine Learning Reveals a Significant Shift in Water Regime Types Due to Projected Climate Change. ISPRS Int. J. Geo- Inf., 10, 660, DOI: 10.3390/ijgi10100660.
2. Bloschl G., Hall J., Parajka J. et al. (2017). Changing climate shifts timing of European floods. Science, 357, 588-590, DOI: 10.1126/science. aan2506.
3. Bloschl G., Hall J., Viglione A., Perdigao R.A.P., Parajka J., Merz B., Lun D., Arheimer B., Aronica G.T., Bilibashi A., Bohac M., Bonacci O., Borga M., Canjevac I., Castellarin A., Chirico G.B., Claps P, Frolova N., Ganora D., Gorbachova L., Gul A., Hannaford J., Harrigan S., Kireeva M., Kiss A., Kjeldsen T.R., Kohnova S., Koskela J.J., Ledvinka O., Macdonald N., Mavrova-Guirguinova M., Mediero L., Merz R., Molnar P, Montanari A., Murphy C., Osuch M., Ovcharuk V., Radevski I., Salinas J.L., Sauquet E., Sraj M., Szolgay J., Volpi E., Wilson D., Zaimi K., and Zivkovic N. (2019). Changing climate both increases and decreases European river floods. Nature, 573, 10-111, DOI: 10.1038/s41586-019-1495-6.
4. Brunner M.I., Viviroli D. Furrer R., Seibert J., and Favre A.C. (2018). Identification of Flood Reactivity Regions via the Functional Clustering of Hydrographs. Water Resources Research, 54(3), 1852-1867, DOI: 10.1002/2017WR021650.
5. Dempster P, Laird N.M. and Rubin D.B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1-38.
6. Djamalov R.G., Frolova N.L., Bugrov A.A., Grigoriev V.Yu., Igonina M.I., Kireeva M.B., Krichevets G.N., Rets E.P, Safronova T .I., Telegina A.A., Telegina E.A., and Fathi M.O. (2014). Renewable Water Resources of the European Part of Russia. Atlas. Moscow: Water Problem Institute of RAN. (In Russian).
7. Djamalov R.G., Frolova N.L., Kireeva M.B., Rets E.P, Safronova T.I., Bugrov A.A., Telegina A.A., Telegina E.A. (2015). Modern resources of underground and surface waters of the European part of Russia: formation, distribution, use. Moscow: GEOS. (In Russian).
8. Frolova N.L., Kireeva M.B., Kharlamov M.A., Samsonov T.E., Entin A.L., Lurie I.K. (2020). Mapping the current state and transformation of the water regime of the rivers of the European territory of Russia. Geodesy and Cartography, 7, 14-26, DOI: 10.22389/0016-7126-2020-961-7- 14-26. (In Russian).
9. Frolova N.L., Magritsky D.V., Kireeva M.B., Grigoriev V.Yu., Gelfan A.N., Sazonov A.A., Shevchenko A.I. (2022). Runoff of Russian rivers under ongoing and predicted climate changes: a review of publications. 1. Assessment of changes in the water regime of Russian rivers based on observational data. Water Resources, 49(3), 251-269, DOI: 10.31857/S032105962203004X. (In Russian).
10. Frolova N.L., Povalishnikova E.S., Kireeva M.B. (2021). Classification and zoning of rivers by their water regime: History, methodology, and perspectives. Water Resources, 48(2), 169-181, DOI: 10.1134/s0097807821020056.
11. Gelfan A.N., Frolova N.L., Magritsky D.V., Kireeva M.B., Grigoriev V.Yu., Motovilov Yu.G., Gusev E.M. (2021). Influence of climate change on the annual and maximum runoff of rivers in Russia: assessment and forecast Fundamental and applied climatology, 7(1), 36-79, DOI: 10.21513/2410-8758-2021-1-36-79 (In Russian).
12. Georgievsky V.Yu., and Shalygin A.L. (2012). Hydrological regime and water resources. Methods for assessing the consequences of climate change for physical and biological systems, Moscow: Rosgidromet, 53-86. (In Russian).
13. Haines A.T., Finlayson B.L., McMahon T.A. (1988). A global classification of river regimes. Applied Geography, 8(4), 255-272, DOI: 10.1016/0143-6228(88)90035-5.
14. Hall J. and Bloschl G. (2018). Spatial patterns and characteristics of flood seasonality in Europe. Hydrol. Earth Syst. Sci., 22, 3883-3901, DOI: 10.5194/hess-22-3883-2018.
15. Harris N.M., Gurnell A.M., Hannah D.M., and Petts G.E. (2000). Classification of river regimes: a context for hydroecology. Hydrological Processes, 14(16-17), 2831-2848, DOI: 10.1002/1099-1085(200011/12)14:16/17<2831::AID-HYP122>3.0.CO;2-O.
16. Kidanewold B.B., Seleshi Y., Demissie S., and Melesse A.M. (2015). Flow Regime Classification and Hydrological Characterization: A Case Study of Ethiopian Rivers Water, 7, 3149-3165, DOI: 10.3390/w7063149.
17. Kingston D.G., Hannah D.M., Lawler D.M., and McGregor G.R. (2011). Regional classification, variability, and trends of northern North Atlantic river flow. Hydrol. Processes, 25(7), 1021-1033.
18. Kireeva M., Frolova N., Rets E., Samsonov T., Entin A., Kharlamov M., Telegina E., Povalishnikova E. (2019). Evaluating climate and water regime transformation in the European Part of Russia using observation and reanalysis data for the 1945-2015 period. International Journal of River Basin Management, 18(4), 1-12, DOI: 10.1080/15715124.2019.1695258.
19. Kratzert F., Klotz D., Shalev G., Klambauer G., Hochreiter S. and Nearing G. (2019). Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrol. Earth Syst. Sci., 23, 5089-5110, DOI: 10.5194/hess-23- 5089-2019.
20. Long-term fluctuations and variability of water resources and the main characteristics of the flow of rivers in the Russian Federation. Scientific and Applied Handbook. (2021). St. Petersburg: LLC «RIAL».
21. Olden J.D., and Poff N.L. (2003). Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications, 19, 101-121, DOI: 10.1002/rra.700.
22. Prokhorenkova L., Gusev G., Vorobev A., Dorogush A.V., Gulin A. (2019). CatBoost: unbiased boosting with categorical features. Available at: https://arxiv.org/pdf/1706.09516.pdf%20https://tech.yandex.ru/catboost/ [Accessed Apr. 2020].
23. Rousseeuw J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 5365, DOI: 10.1016/0377-0427(87)90125-7.
24. Sasirekha K. and Baby P. (2013). Agglomerative hierarchical clustering algorithm. A review. International Journal of Scientific and Research Publications, 83, 83.
25. Schubert E., Sander J., Ester M., Kriegel H. P, and Xu X. (2017). DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3), 1-21, DOI: 10.1145/3068335.
26. Shalev G., El-Yaniv R., Klotz D., Kratzert F., Metzger A., Nevo S. (2019). Accurate Hydrologic Modeling Using Less Information. Mathematics, Computer Science, Available at: https://arxiv.org/pdf/1911.09427.pdf.
27. Tavassoli H.R., Tahershamsi A. and Acreman M. (2014). Classification of natural flow regimes in Iran to support environmental flow management. Hydrological Sciences Journal, 59(3-4), 517-529, DOI: 10.1080/02626667.2014.890285.
28. Townsend J.T. (1971). Theoretical analysis of an alphabetic confusion matrix. Perception & Psychophysics, 9(1), 40-50.
29. Water regime of the rivers of Russia and adjacent territories. Map for higher educational institutions. (2001). Scale 1:8 000 000, V.M. Evstigneev, N.V. Shenberg, N.V. Anisimova, A.A. Zaitsev (Eds.), Novosibirsk, Roskartografia Cartographic Factory. (In Russian).
30. Webb J.A., Bond N.R., Wealands S.R., Nally R.M., Quinn G.P, Vesk PA., and Grace M.R. (2007). Bayesian clustering with AutoClass explicitly recognises uncertainties in landscape classification. Ecography, 30, 526-536, DOI: 10.1111/j.0906-7590.2007.05002.x.
31. Xu D., and Tian Y (2015). A Comprehensive Survey of Clustering Algorithms. Ann. Data. Sci., 2, 165-193, DOI: 10.1007/s40745-015-0040-1.
Review
For citations:
Ivanov A.M., Gorbarenko A.V., Kireeva M.B., Povalishnikova E.S. Identifying Climate Change Impacts On Hydrological Behavior On Large-Scale With Machine Learning Algorithms. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2022;15(3):80-87. https://doi.org/10.24057/2071-9388-2022-087