Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Evaluating Zinc Nutrition In Perennial Ryegrass Grown In An Andisol

https://doi.org/10.24057/2071-9388-2022-041

Abstract

Zinc is an essential nutrient for humans, animals, and plants. Zinc uptake by crops is dictated by zinc availability in the soil, which in turn may be dictated, at least in part, by soil mineralogy. Little is known about the phytoavailability of Zn in Andisols, which are important agricultural soils in volcanic regions, such as Japan, New Zealand, and southern Chile. In this study, we assessed the vegetative growth response of perennial ryegrass (Lolium perenne, L.) to Zn fertilization in an Andisol from southern Chile. Ryegrass was grown in a greenhouse pot experiment with twelve rates of Zn application from 0 to 6075 mg Zn/kg soil. After 63 days, shoot length, specific leaf area, and biomass were measured. Foliar Zn concentrations were measured and correlated with plant-available Zn as measured by a diethylenetriaminepentaacetic acid (DTPA)-soil extraction (DTPA-Zn hereafter). Zinc toxicity to ryegrass was assessed using the Toxicity Relationship Analysis Program. This study demonstrated that a DTPA-Zn level of 1 mg Zn/kg soil was not limiting for ryegrass growth. Although Zn fertilization did not improve ryegrass growth in the studied Andisol, this study still has practical implications. Zinc deficiency in humans is a global problem and increasing Zn in staple food and forage crops may require Zn fertilization. This study suggests that Andisols can be fertilized with high doses of Zn without a risk of causing Zn toxicity to crops. However, a DTPA-Zn level of >489 mg Zn/kg soil decreased shoot length, indicating a toxicity response.

About the Authors

Jason W. Stuckey
Natural Sciences Department and Environmental Science Program, Multnomah University
United States

Portland, OR



José Verdejo
Instituto de Ingeniería Agraria y Suelos, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile
Chile

Valdivia



Sebastián García
Instituto de Ingeniería Agraria y Suelos, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile
Chile

Valdivia



Dante Pinochet
Instituto de Ingeniería Agraria y Suelos, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile
Chile

Valdivia



Carolina Yáñez
Instituto de Biología, Pontificia Universidad Católica de Valparaíso
Chile

Valparaíso



Yu. A. Krutyakov
National Research Centre «Kurchatov Institute»; Laboratory of Functional Materials for Agriculture, Department of Chemistry, Lomonosov Moscow State University
Russian Federation

Moscow



Alexander Neaman
Departamento de Recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Tarapacá
Chile

Arica



References

1. Alley M., Martens D., Schnapplnger Jr M., and Hawkins G. (1972). Field calibration of soil tests for available zinc. Soil Science Society of America Journal 36, 621-624, DOI: 10.2136/sssaj1972.03615995003600040034x.

2. Baissa T., Suwanarit A., Osotsapar Y., and Sarobol E. (2007). Status of Mn, Fe, Cu, Zn, B and Mo in Rift Valley Soils of Ethiopia: Laboratory Assessment. Agriculture and Natural Resources 41,84-95.

3. Bravo S., González-Chang M., Dec D., Valle S., Wendroth O., Zúñiga F., and Dorner J. (2020). Using wavelet analyses to identify temporal coherence in soil physical properties in a volcanic ash-derived soil. Agricultural and Forest Meteorology 285, 107909, DOI: 10.1016/j. agrformet.2020.107909.

4. Brown A., Quick J., and Eddings J. (1971). A comparison of analytical methods for soil zinc. Soil Science Society of America Journal 35, 105-107, DOI: 10.2136/sssaj1971.03615995003500010031x.

5. Brown PH., Cakmak I., and Zhang Q. (1993). Form and Function of Zinc Plants, In: Robson A. D., editor Zinc in Soils and Plants. Dordrecht: Springer, 93-106, DOI: 10.1007/978-94-011-0878-2_7.

6. Cakmak I., McLaughlin M.J., and White PJ. (2017). Zinc for better crop production and human health. Plant and Soil 411, 1-4, DOI: 10.1007/s11104-016-3166-9.

7. Grigorita G., Neaman A., Brykova R., Brykov V.A., Morev D.V., Ginocchio R., Paltseva A.A., Vidal K., Navarro-Villarroel C., and Dovletyarova E.A. (2020). Use of Zinc Carbonate Spiking to Obtain Phytotoxicity Thresholds Comparable to Those in Field-Collected Soils. Environmental Toxicology and Chemistry 39, 1790-1796, DOI: 10.1002/etc.4809.

8. Havlin J., and Soltanpour P (1981). Evaluation of the NH4HCO3-DTPA soil test for iron and zinc. Soil Science Society of America Journal 45, 70-75, DOI: 10.2136/sssaj1981.03615995004500010016x.

9. Hotz C., and Brown K.H. (2004). Assessment of the risk of zinc deficiency in populations and options for its control. . Food and Nutrition Bulletin 25, S94-S203.

10. Hue N. (2004). Responses of coffee seedlings to calcium and zinc amendments to two Hawaiian acid soils. Journal of Plant Nutrition 27, 261-274, DOI: 10.1081/PLN-120027653.

11. Indira Sarangthem L., Sharma D., Oinam N., and Punilkumar L. (2018). Evaluation of Critical Limit of Zinc in Soil and Plant. International Journal of Current Research in Life Sciences 7, 2584-2586.

12. Kalra Y.P. (1998). Handbook of Reference Methods for Plant Analysis. Boca Raton, FL, USA: Soil and Plant Analysis Council, CRC Press.

13. Katyal J. (1993). Distribution of zinc in Indian soils. Fertilizer News 38, 15.

14. Katyal J.C., and Sharma B.D. (1991). DTPA-extractable and total Zn, Cu, Mn, and Fe in Indian soils and their association with some soil properties. Geoderma 49, 165-179, DOI: 10.1016/0016-7061(91)90099-f.

15. Kutner M., Nachtsheim C., and Neter J. (2004). Applied Linear Regression Models. Boston: McGraw-Hill Education.

16. Lindsay W.L., and Norvell W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42, 421-428, DOI: 10.2136/sssaj1978.03615995004200030009x.

17. Makarim A., and Cox F. (1983). Evaluation of the Need for Copper with Several Soil Extractants. Agronomy Journal 75, 493-496, DOI: 10.2134/agronj1983.00021962007500030018x.

18. Sadzawka A., Carrasco M.A., Demanet R., Flores H., Mora M.L., Neaman A., Hernández P, and Sandoval M. (2015). Métodos de análisis de lodos y de suelos. Chillán: Sociedad Chilena de la Ciencia del Suelo. Universidad de Concepción.

19. Salazar O., Manrique A., Tapia Y., Casanova M., Govan J., Covarrubias J.I., Contreras A., and Cabeza R.A. (2021). The Development of a Model for Recommending the Application of Zinc Fertilizer in the Mediterranean Region of Central Chile. Journal of Soil Science and Plant Nutrition 21,249-257, DOI: 10.1007/s42729-020-00357-0.

20. Singh S., Tack F., and Verloo M. (1996). Extractability and bioavailability of heavy metals in surface soils derived from dredged sediments. Chemical Speciation & Bioavailability 8, 105-110, DOI: 10.1080/09542299.1996.11083274.

21. Stein A.J. (2010). Global impacts of human mineral malnutrition. Plant and Soil 335, 133-154, DOI: 10.1007/s11104-009-0228-2.

22. US EPA (2013). Toxicity Relationship Analysis Program (TRAP) version 1.22 United States Environmental Protection Agency, Mid¬Continent Ecology Division, http://www.epa.gov/med/Prods_Pubs/trap.htm.

23. Velásquez G., Ngo P.-T., Rumpel C., Calabi-Floody M., Redel Y., Turner B.L., Condron L.M., and de la Luz Mora M. (2016). Chemical nature of residual phosphorus in Andisols. Geoderma 271,27-31, DOI: 10.1016/j.geoderma.2016.01.027.

24. Vistoso E., Iraira S., and Sandaña P (2020). Effects of phosphorus fertilizer solubility on pastures yield and quality in Andisols. Journal of Soil Science and Plant Nutrition 20, 637-647, DOI: 10.1007/s42729-019-00152-6.


Review

For citations:


Stuckey J.W., Verdejo J., García S., Pinochet D., Yáñez C., Krutyakov Yu.A., Neaman A. Evaluating Zinc Nutrition In Perennial Ryegrass Grown In An Andisol. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2022;15(3):56-60. https://doi.org/10.24057/2071-9388-2022-041

Views: 581


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)