Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Climatic Factor Impact On the Height Growth Of Lapland Pine in The Northwestern Russia

https://doi.org/10.24057/2071-9388-2021-055

Abstract

Lapland pine (Pinus sylvestris var. lapponica Hartm.) is a geographical and climatic ecotype and subspecies of Pinus sylvestris L. It is widespread in the north of Eurasia. Its height growth is interconnected with both climatic parameters and the state of the habitat of pine trees. Long-term data on height growth indices of Lapland pine from various humid biogeocenoses of three specially protected natural territories of Northwestern Russia were studied. Also, sixteen basic climatic parameters averaged over the growth period of the examined trees were calculated for these regions. The comparison of different climatic parameters and pine stand height growth in various biogeocenoses was made using cluster analysis. It was established that the mean daily average temperature in January (-9.4°C, -10.4°C, -16.1°C in the Kivach, Polar Circle and Pechora-Ilych Reserves respectively) and the amount of precipitation in spring and early summer periods have a primary influence on the cluster similarity of the Lapland pine height growth in Northwestern Russia. The similarity of soil and biocenotic conditions also influenced the similarity of Lapland pine height growth indices, but had a lower rank within the two main clusters distinguished by climatic values. Our studies showed that it is possible to identify the rank influence of the most significant climatic factors and biogeocenotic conditions on the pine height growth using cluster analysis.

About the Authors

Elena N. Popova
Institute of Geography of the Russian Academy of Sciences
Russian Federation

Staromonetniy pereulok, 29, Moscow, 119017



Anna E. Koukhta
Yu.A. Izrael’ Institute of Global Climate and Ecology
Russian Federation

Glebovskaya str., 20b, Moscow, 107258



Igor O. Popov
Yu.A. Izrael’ Institute of Global Climate and Ecology
Russian Federation

Glebovskaya str., 20b, Moscow, 107258



References

1. Alisov B.P. (1956). Climate of the USSR. Publishing house of Moscow University, Moscow (in Russian).

2. BCNKC (2020). The Basin Council of North Karelian Coast. Non-Profit Corp. [online] Available at: https://www.kareliacoast.org. [Accessed 18 Mar. 2020].

3. Bonan G.B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320(5882),1444–1449, DOI: 10.1126/science.1155121.

4. Chernogaeva G.M. and Kuhta A.E. (2018). The Response of Boreal Forest Stands to Recent Climate Change in the North of the European Part of Russia. Russian Meteorology and Hydrology, 43(6), 418-424, DOI: 10.3103/S1068373918060109.

5. Degteva S.V. and Lapteva E.M. (eds) (2013). Soils and soil cover of the Pechora-Ilych Reserve (Northern Urals). Syktyvkar, ISBN:978-5- 89606-513-5 (in Russian).

6. Dobbertin M., Eilmann B., Bleuler P., Giuggiola A., Graf-Pannatier E., Landolt W., Schleppi P., Rigling A. (2010). Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiol., 30, 346–360. DOI: 10.1093/treephys/tpp123.

7. Dobrovol’skii G.V. and Urusevskaya I.S. (2004). Soil geography. Second Edition. Publishing house of Moscow University, Moscow ISBN:5- 211-04481-9, KolosC, Moscow ISBN:5-9532-0254-7 (in Russian).

8. Egorov V.V., Fridland V.M., Ivanova E.N., Rozov N.N., Nosin V.A., Friev T.A. (1977). Classification and diagnostics of soils in the USSR. Kolos, Moscow (in Russian).

9. Elagin I.N. (1976). Seasonal development of pine forests. Nauka, Novosibirsk (in Russian).

10. Fedorets N.G., Morozova R.M., Bakhmet O.N., Solodovnikov A.N. (2006). Soils and soil cover of the Kivach reserve. Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences, Petrozavodsk 10, 131-152 (in Russian with English summary).

11. Gitis L. (2003). Statistical classification and cluster analysis. Publishing House of Moscow State Mining University, Moscow ISBN:5-7418- 0010-6 (in Russian).

12. Gymnosperm DB (2022). The Gymnosperm Database. [online] Available at: https://www.conifers.org/pi/Pinus_sylvestris.php. [Accessed 4 Jan. 2022].

13. Jansons A., Matisons R., Baumanis I., Purina L. (2013a). Effect of climatic factors on height increment of Scots pine in experimental plantation in Kalsnava, Latvia. Forest Ecology and Management, 306, 185–191. DOI: 10.1016/j.foreco.2013.06.039.

14. Jansons A., Matisons R., Lībiete-Zālīte Z., Baders E., Rieksts-Riekstinёš R. (2013b). Relationships of height growth of lodgepole pine (Pinus contorta var. latifolia) and Scots pine (Pinus sylvestris) with climatic factors in Zvirgzde, Latvia. Baltic Forestry, 19(2), 236–244.

15. Kishchenko I.T. (2019). Seasonal formation of aboveground phytomass of middle-aged pine stands of various types of forest in the middle taiga. Lesovedenie (Forestry), 1, 19-28 (in Russian with English summary), DOI: 10.1134/S002411481901008X.

16. KNR (2020). Kivach Nature Reserve. Official Website. [online] Available at: https://zapkivach.ru. [Accessed 20 Mar. 2020].

17. Koukhta A.E. (2003). Linear growth of trees as an indicator of the state of the environment. Siberian ecological journal, 6, 767-771 (in Russian with English summary).

18. Koukhta A.E. and Titkina S.N. (2005). Climatogenic variations in linear increment of Scots pine juvenile plants in model stands in the Penza region. Problems of ecological monitoring and modeling of ecosystems, 20, 251-261 (in Russian with English summary).

19. McCarroll D., Jalkanen R., Hicks S., Tuovinen M., Gagen M., Pawellek F., Eckstein D., Schmitt U., Autio J., Heikkinen O. (2003). Multiproxy dendroclimatology: a pilot study in northern Finland. Holocene, 13, 829–838, DOI: 10.1191/0959683603hl668rp.

20. Misi D., Puchałka R., Pearson C., Robertson I., Koprowski M. (2019). Differences in the Climate-Growth Relationship of Scots Pine: A Case Study from Poland and Hungary. Forests, 243(10), 1-12, DOI: 10.3390/f10030243.

21. Mutke S., Gordo J., Climent J., Gil L. (2003). Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. Ann. For. Sci., 60, 527–537, DOI: 10.1051/forest:2003046.

22. Nikolaeva S.A. and Savchuk D.A. (2008). Climatogenic response of pine trees in the south of the Tomsk region. J. of the Siberian Federal University, Biology, 1(4), 400-413 (in Russian with English summary).

23. Pensa M., Salminen H., Jalkanen R. (2005). A 250-year-long height-increment chronology for Pinus sylvestris at the northern coniferous timberline: a novel tool for reconstructing past summer temperatures? Dendrochronologia, 22, 75–81, DOI: 10.1016/j.dendro.2005.02.005.

24. PISNBR (2020). Pechora-Ilych State Nature Biosphere Reserve. Official Website. [online] Available at: https://www.pechora-reserve.ru. [Accessed 22 Mar. 2020].

25. Plant List (2022). The Plant List. [online] Available at: http://www.theplantlist.org. [Accessed 4 Jan. 2022].

26. Popova E.N., Yasyukevich V.V., Popov I.O. (2017). On the correct use of cumulative applied climate indices for studying biological objects. Russian Meteorology and Hydrology, 42(10), 661–664, DOI: 10.3103/S1068373917100053.

27. Pozdnyakova E.A., Volkova G.L., Koukhta A.E. (2019). Variability of Scots pine linear increment in different types of biotopes of the European part of Russia. Lesnoy Vestnik (Forestry bulletin), 23(2), 61–69 (in Russian with English summary), DOI: 10.18698/2542-1468-2019-2-61-69.

28. Pravdin L.F. (1964). Pinus sylvestris. Variability, intraspecific taxonomy and selection. Nauka, Moscow (in Russian).

29. Raschka S. and Mirjalili V. (2017). Python Machine Learning - Second Edition. Packt Publishing Ltd. ISBN:9781787125933.

30. RSRIHI-WDC (2014). All Russian Research Institute of Hydrometeorological Information - World Data Center. Official Website. [online] Available at: http://www.meteo.ru. [Accessed 10 Feb 2014].

31. Rumyantsev D.E. (2004). Diagnostics of the growth features of pine and spruce in South Karelia using dendrochronological methods. Dissertation.... candidate of biological sciences, Moscow State Forest University, Moscow (in Russian).

32. Rysin L.P. and Savelyeva L.I. (2008). Pine forests of Russia. Partnership of scientific publications “KMK”, Moscow, ISBN:978-5-87317-512-3 (in Russian).

33. Salminen H. and Jalkanen R. (2005). Modelling the effect of temperature on height increment of Scots pine at high latitudes. Silva Fennica, 39, 497–508. Available at: http://www.metla.fi/silvafennica/full/sf39/sf394497.pdf. [Accessed 10 Apr. 2020].

34. Sánchez-Salguero R., Camarero J.J., Hevia A., Madrigal-González J., Linares J.C., Ballesteros-Canovas J.A., Sánchez-Miranda A., AlfaroSánchez R. (2015). What drives growth of Scots pine in continental Mediterranean climates: Drought, low temperatures or both? Agric. For. Meteorol., 206, 151–162, DOI: 10.1016/j.agrformet.2015.03.004.

35. Selyaninov G.T. (1928). On agricultural assessment of climate. Works on agricultural meteorology. Issue 20, 169-178 (in Russian).

36. Shestakova T.A., Voltas J., Saurer M., Siegwolf R.T.W., Kirdyanov A.V. (2017). Warming effects on Pinus sylvestris in the cold–dry Siberian forest–steppe: positive or negative balance of trade? Forests, 8(12), 1-21, DOI: 10.3390/f8120490.

37. Sirotenko O.D. and Pavlova V.N. (2012). Methods for assessing the impact of climate change on agricultural productivity. In: Semenov S.M., Popova E.N., Trifonova-Yakovleva A.M., Yasukevich V.V. (eds). Methods for assessment of climate change consequences for physical and biological systems, Roshydromet, Moscow, pp. 165-189. ISBN:978-5-904206-10-9 (in Russian).

38. SPTsR (2020). Specially protected territories of Russia. Official Website. [online] Available at: http://oopt.aari.ru. [Accessed 20 Aug. 2020] (in Russian).

39. Sukachev V.N. (1972). Selected works in three volumes. In: Lavrenko E.M. (ed). Vol. 1: Fundamentals of forest typology and biogeocenology. Nauka, Leningrad (in Russian).

40. Thabeet A., Vennetier M., Gadbin-Henry C., Dendelle N., Roux M., Caraglio Y., Vila B. (2009). Response of Pinus sylvestris L. to recent climatic events in the French Mediterranean region. Trees – Structure and Function, 23, 843–853, DOI: 10.1007/s00468-009-0326-z.

41. van der Maaten E., Mehl A., Wilmking M., van der Maaten-Theunissen M. (2017). Tapping the tree-ring archive for studying effects of resin extraction on the growth and climate sensitivity of Scots pine. Forest ecosystems, 4(7), 1-7, DOI: 10.1186/s40663-017-0096-9.

42. Voronov A.G., Drozdov N.N., Krivolutsky D.A., Myalo E.G. (2002). Biogeography with the basics of ecology. Publishing house of Moscow State University, Moscow, ISBN:5-211-04664-1, Publishing house «Higher school», Moscow ISBN:5-06-004341-X (in Russian).

43. Zhou Y., Lei Z., Zhou F., Han Y., Yu D., Zhang Y. (2019). Impact of climate factors on height growth of Pinus sylvestris var. mongolica. PloS ONE, 14(3), e0213509, DOI: 10.1371/journal.pone.0213509.


Review

For citations:


Popova E.N., Koukhta A.E., Popov I.O. Climatic Factor Impact On the Height Growth Of Lapland Pine in The Northwestern Russia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2022;15(1):122-129. https://doi.org/10.24057/2071-9388-2021-055

Views: 719


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)