Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Phylogenetic phytogeography of selected groups of seagrasses (Monocotylendoneae - Alismatales) based on analysing of genes 5.8S rRNA and RuBisCo large subunit

https://doi.org/10.24057/2071-9388-2021-111

Abstract

Seagrasses are representatives of the families Cymodoceaceae, Posidoniaceae, Zosteraceae, Hydrocharitaceae (Monocotylendoneae - Alismatales), adapted to growing in seawaters and all their important life circle events are taking place under the water including pollination and distribution of diasporas. Seagrasses are widespread in the littoral areas of the World Ocean, except for Antarctica, and play an important ecosystem role. Due to the insufficiently studied history of dispersal and formation of modern seagrasses habitats, we carried out a phylogenetic analysis of representatives of the families Cymodoceaceae (Amphibolis, Halodule, Syringodium, Cymodocea, and Thalassodendron), Posidoniaceae (Posidonia), Zosteraceae (Zostera, and Phyllospadix), and Hydrocharitaceae (Enhalus, Halophila, and Thalassia). The cladograms constructed based on molecular data analysis of the 5.8S ribosomal RNA and ribulose–1,5–bisphosphate carboxylase/oxygenase large subunit genes are used as the basis for reconstructing the history of dispersal of the studied taxa. It is found that the main stages of dispersal of selected groups of seagrasses took place in the Late Cretaceous period. The main track of historical distribution is largely predetermined by the modern ranges of almost all genera of seagrasses, stretches from the southwestern waters of eastern Gondwana to the northwestern waters of the Eurasian part of Laurasia. The main route of movement of diasporas and seagrasses populations was the Tethys water area, which was modified in the Late Mesozoic and early Cenozoic. It was revealed that the main method of dispersal of seagrasses was long-distance dispersal, which is confirmed by both molecular genetic data and very fast (on a geological time scale) processes of penetration into new water areas, and analysis of the features of dissemination of modern representatives. An alternative vicar scenario was proposed only for the reconstruction of the formation of the Posidonia range.

About the Author

Anton A. Iurmanov
Main Botanical Garden named after N. V. Tsitsin RAS
Russian Federation

st. Botanicheskaya, 4, Moscow, 127276

 



References

1. APG IV. Angiosperm Phylogeny Group IV. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1–20.

2. Ascherson P. (1871). Die geographische Verbreitung der Seegr¨aser. Petermann’s Geographische Mittheilungen, 17, 241–248.

3. Ascherson P. (1875). Die geographische Verbreitung der Seegr¨aser. In: Anleitung zu wissenschaftlichen Beobachtungen auf Reisen, mit besondere R¨ucksicht auf die Bed¨urfnisse der kaiserlichen Marine. Berlin: Robert Oppenheim Verlag, 359–373.

4. Ascherson P. (1906). Die geographische Verbreitung der Seegr¨aser. In: Anleitung zu wissenschaftlichen Beobachtungen auf Reisen. 3rd Ed, Band 2. Hannover: Dr. Max Janecke Verlagsbuchhandlung, 389– 413.

5. Barnes G. (2003). Origins of the Japanese Islands: The New «Big Picture». Nichibunken Japan Review, 15, 3–50.

6. Bobrov A., Roslov M., Romanov M. (2020). Phylogenetic biogeography of Hamamelidaceae s. l. based on molecular data. Bulletin of St. Petersburg University. Earth Sciences, 65(2), 224–244. (In Russian with English summary).

7. Borum J., Duartes C., Krause Jensen D. and Greve T. (2004). European seagrasses: an introduction to monitoring and management. London: EU Project Monitoring and Managing of European Seagrasses (M&MS).

8. Cambridge M. and Kuo J. (1979). Two new species of seagrass from Australia, Posidonia sinuosa and Posidonia angustifolia (Posidoniaceae). Aquatic Botany, 6, 307–328.

9. Clague D. and Dalrymple G. (1987). The Hawaiian-Emperor Volcanic Chain. Geologic Evolution. Volcanism in Hawaii, 1, 5–54.

10. Coleman F. and Williams S. (2002). Overexploiting marine ecosystem engineers: potential consequences for biodiversity. Trends in Ecology and Evolution, 17(1), 40–44.

11. Cook C. (1998). Hydrocharitaceae. In: The Families and Genera of Vascular Plants. Vol 4. Monocots. Alismatanae and Commelinanae (expect Gramineae). Berlin: Springer, 234–248.

12. den Hartog C. (1970). The sea-grasses of the World. Rotterdam: A. A. Balkema.

13. Gabdullin R. (2005). Historical Geology. Book. 1. Moscow: Publishing house of Moscow State University. (In Russian) Garcia-Castellanos D., Estrada F., Jiménez-Munt I., Gorini C., Fernàndez M., Vergés J. and De Vicente R. (2009). Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature, 462, 778—781.

14. Green E. and Short F. (2003). World Atlas of Seagrasses. Berkeley: University of California Press.

15. Hall B. (2011). Phylogenetic Trees Made Easy: A How To Manual. 4th Ed. Sunderland: Sinauer Ass.

16. Hemminga M. and Duarte C. (2000). Seagrass Ecology. Cambridge: Cambridge University Press.

17. Hogarth P. (2015). The Biology of Mangroves and Seagrasses. 3rd Ed. Oxford: Oxford University Press.

18. Hosius A. and Von der Marck W. (1880). Die Flora der Westfälische Kreideformation. Palaeontographica, 26, 125–236.

19. Irlandi E. and Peterson C. (1991). Modification of animal habitat by large plants: mechanisms by which seagrasses influence clam growth. Oecologia, 87, 307–318.

20. Iurmanov A. (2017). Phylogenetic biogeography of the Posidoniaceae family: molecular genetic analysis. In: Proceedings of the VI International Scientific and Practical Conference “Marine Research and Education (MARESEDU-2017)”. Tver: LLC PoliPRESS», 507–510. (In Russian).

21. Iurmanov A. (2018). Phylogenetic biogeography of Halophila Thouars (Hydrocharitaceae) In: Proceedings of IV (XII) International Botanical Conference of Young Scientists in Saint-Petersburg. Saint-Petersburg: Komarov Botanical Institute of the Russian Academy of Sciences. 256.

22. Iurmanov A., Romanov M. and Bobrov A. (2020a). Phylogenetic phytogeography of the family Cymodoceaceae. Problems of Botany of South Siberia and Mongolia, 19(2), 94-97. (In Russian with English summary).

23. Iurmanov A., Romanov M. and Bobrov A. (2020b). Phylogenetic phytogeography of the family Zosteraceae. // Problems of Botany of South Siberia and Mongolia, 19(2), 98-9101. (In Russian with English summary).

24. Iurmanov A., Romanov M. (2020). Phylogenetic phytogeography of selected groups of seagrasses (Monocotylendoneae - Alismatales). In: Materials of the International Youth Scientific Forum Lomonosov-2020 (Electronic resource). Moscow: MAKS Press, 1–3.

25. Iurmanov A., Romanov M. and Bobrov A. (2021). Fruit morphology and histology of Zostera asiatica Miki and Phyllospadix iwatensis Makino (Zosteraceae) in connection with сomparative carpologу of higher Alismatales. Botany Letters, 168(4), 570-576.

26. Koriba K. and Miki S. (1931). On Archeozostera from the Izumi Sandstone. Chikyu (The Globe), 15, 165–201. (In Japanese).

27. Koriba K. and Miki S. (1958). Archeozostera, a new genus from Upper Cretaceous in Japan. The Palaeobotanist, 7, 107-111.

28. Kuo J. and den Hartog C. (2000). Seagrasses: A profile of an ecological group. Biologia Marina Mediterranea, 7(2), 3–17.

29. Kuo J. and McComb A. (1989). Seagrass taxonomy, structure and development. In: Biology of seagrasses: A treatise on the biology of seagrasses with special reference to the Australian region. Amsterdam: Elsevier, 6–73.

30. Kuo J. and McComb A. (1998a). Cymodoceaceae. In: The Families and Genera of Vascular Plants. Vol 4. Monocots. Alismatanae and Commelinanae (expect Gramineae). Berlin: Springer, 133–140.

31. Kuo J. and McComb A. (1998b). Posidoniaceae. In: The Families and Genera of Vascular Plants. Vol 4. Monocots. Alismatanae and Commelinanae (expect Gramineae). Berlin: Springer, 404–407.

32. Kuo J. and McComb A. (1998c). Zosteraceae. In: The Families and Genera of Vascular Plants. Vol 4. Monocots. Alismatanae and Commelinanae (expect Gramineae). Berlin: Springer, 496–502.

33. Larkum A. and den Hartog C. (1989). Evolution and biogeography of seagrasses. In: Biology of Seagrasses. A Treatise on the Biology of Seagrasses with Special Reference to the Australian Region. Amsterdam: Elsevier, 112–156.

34. Larkum A., McComb A. and Shephard S. (1989). Biology of Seagrasses. Elsevier: Amsterdam. Larkum A., Orth J. and Duarte M. (2006). Seagrasses: biology, ecology and conservation. Berlin: Springer.

35. Les D., Cleland M.and Waycott M. (1997). Phylogenetic studies in Alismatidae, II: Evolution of marine angiosperms (Seagrasses) and hydrophily. Systematic Botany, 22, 443–463.

36. Lumbert S., den Hartog C., Phillips R., and Olsen F. (1984). The occurrence of fossil seagrasses in the Avon Park Formation (Late middle Eocene), Levy County, Florida (U.S.A.). Aquatic Biology, 20,121-129.

37. Macreadie P., Baird M.; Trevathan-Tackett S., Larkum A. and Ralph P. (2013). Quantifying and modelling the carbon sequestration capacity of seagrass meadows. Marine Pollution Bulletin, 83(2), 430–439.

38. Moissette P., Koskeridou E., Cornée J., Guillocheau F. and Lécuyer C. (2007). Spectacular preservation of seagrasses and seagrassassociated communities from the Pliocene of Rhodes, Greece. Palaios, 22, 200–211.

39. Nagelkerken I. and van der Velde G. (2004). Relative importance of interlinked mangroves and seagrass beds as feeding habitats for juvenile reef fish on a Caribbean island. Marine Ecology Progress Series, 274, 153–159.

40. Ostenfeld C. (1915). On the geographical distribution of the seagrasses. A preliminary communication. Proceedings of the Royal Society of Victoria, 27, 179–191.

41. Paling E., van Keulen M., Wheeler K., Phillips J. and Dyhrberg R. (2001). Mechanical seagrass transplantation in Western Australia. Ecological Engineering, 16, 331–339.

42. Petrov K. (2008). Ocean biogeography.2nd ed. Moscow: Academic Project; Alma Mater. (In Russian).

43. Ruggieri G. (1952). Segnalazione di frutti fossili di Cymodocea maior (Cavol.) Grande. Webbia, 8(1), 141–146.

44. Setchell W. (1920). Geographical distribution of the marine Spermatophytes. Bull Torrey Botanical Club, 47, 563–579.

45. Short F., Carruthers T., Dennison W. C. and Waycott M. (2007). Global seagrass distribution and diversity: a bioregional model. Journal of Experimental Marine Biology and Ecology, 350, 3–20.

46. Short F. and Coles R. (2001). Global Seagrass Research Methods. Elsevier: Amsterdam. Stockmans F. (1932). Posidonia perforate Saporta et Marion des mares de Gelinden (Paleocene). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, 8(27), 1–9.

47. Taylor T., Taylor E. and Krings M. (2008). Paleobotany: The Biology and Evolution of Fossil Plants. 2nd Ed. Burlington: Academic Press (an imprint of Elsevier).

48. Tiner R., Bergquist H., Halavik T. and MacLachlan A. (2003). Eelgrass Survey for Eastern Long Island Sound, Connecticut and New York. Hadley: National Wetlands Inventory report.Tuya F., Betancort J., Haroun R., Espino F., Lomoschitz A. and Meco J. (2017). Seagrass paleobiogeography: Fossil records reveal the presence of Halodule cf. in the Canary Islands (eastern Atlantic). Aquatic Botany, 143, 1–7.

49. van der Ham R., van Konijnenburg-van Cittert J. and Inderherberge L. (2007). Seagrass foliage from the Maastrichtian type area (Maastrichtian, Danian, NE Belgium, SE Netherlands). Review of Palaeobotany and Palynology, 144(3-4), 301-321.

50. Voigt E. (1981). Upper Cretaceous bryozoan-seagrass association in the Maastrichtian of the Netherlands. In: Recent and Fossil Bryozoa. Fredensborg: Olsen & Olsen, 281–298.

51. Waterhouse A., Allen S. and Bowie A. (2009). Upwelling flow dynamics in long canyons at low Rossby Number. Journal of Geophysical Research, 114, 1–18.


Review

For citations:


Iurmanov A.A. Phylogenetic phytogeography of selected groups of seagrasses (Monocotylendoneae - Alismatales) based on analysing of genes 5.8S rRNA and RuBisCo large subunit. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2022;15(1):61-69. https://doi.org/10.24057/2071-9388-2021-111

Views: 987


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)