Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

AEROSOL PROPERTIES IN MOSCOW ACCORDING TO 10 YEARS OF AERONET MEASUREMENTS AT THE METEOROLOGICAL OBSERVATORY OF MOSCOW STATE UNIVERSITY

https://doi.org/10.24057/2071-9388-2011-4-1-19-32

Full Text:

Abstract

Different microphysical, optical and radiative properties of aerosol were analyzed according to the 10 years of measurements (2001–2010) at the Meteorological Observatory of Moscow State University within the framework of international AERONET program. Volume aerosol size distribution was shown to have a bimodal character with dominating the fine mode aerosol particles at effective radius of reff-fine=0.15 µm. In smoke conditions reff-fine was shown to increase to 0.25 µm at extremely large aerosol optical thickness (AOT). Real and imaginary parts of refractive index are characterized by REFR=1.45, REFI=0.01 respectively, changing to REFR=1.49, REFI=0.006 for smoke aerosol. AOT seasonal changes are characterized by the increase towards warm period with a local minimum in June. The joint analysis of aerosol characteristics with the NOAA_NCEP_CPC_CAMS_OPI climatology shows the nature of these changes. For typical conditions aerosol single scattering albedo (SSA) is about 0.9 at 675 nm and is characterized by a distinct decrease with wavelength while in forest fires conditions it is significantly higher (SSA=0.95). The interaction between volume aerosol concentration of different aerosol fractions was obtained with a distinct decrease of variation towards large aerosol content.

About the Authors

Natalia Chubarova

Russian Federation
Senior scientist, Faculty of Geography, M.V.Lomonosov Moscow State University, Moscow, Russia, Leninskie gory, 1, 1199911


Alexander Smirnov

United States

NASA Goddard Space Flight Center, code 614.4, Greenbelt, MD 20771, USA



Brent Holben

United States

NASA Goddard Space Flight Center, code 614.4, Greenbelt, MD 20771, USA



References

1. Abakumova G.M., Gorbarenko, E.V. (2008) The transparency of the atmosphere in Moscow

2. for the last 50 years and the changes over the territory of Russia, LKI Publishing House,

3. p.

4. Chubarova N.Y., Prilepsky N.G., Rublev A.N., Riebau A.R. (2009) A Mega-Fire Event in

5. Central Russia: Fire Weather, Radiative, and Optical Properties of the Atmosphere, and

6. Consequences for Subboreal Forest Plants. In Developments in Environmental Science.

7. Volume 8 A. Bytnerowicz, M. Arbaugh, A. Riebau and C. Andersen (Eds). Elsevier B.V. pp.

8. –267.

9. Chubarova N.Y., Sviridenkov M.A., Smirnov A. and Holben B.N. (2011) Assessments of urban

10. aerosol pollution in Moscow and its radiative effects, Atmos. Meas. Tech., N 4, pp. 367–378,

11. www.atmos-meas-tech.net/4/367/2011/ doi:10.5194/amt-4-367-2011.

12. Eck T.F., Holben B.N., Reid J.S., O’Neill N.T., Schafer J.S., Dubovik O., Smirnov A., Yamasoe M.A.

13. and Artaxo P. (2003) High aerosol optical depth biomass burning events: A comparison

14. of optical properties for different source regions, Geophys. Res. Lett., 30(20), 2035,

15. doi:10.1029/2003GL017861.

16. Holben,B.N., Eck T.F., Slutsker I., Tanré D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman

17. Y.J., Nakajima T., Lavenu F., Jankowiak I. and Smirnov A. (1998) AERONET-A federated

18. instrument network and data archive for aerosol characterization. Remote Sens.Environ.,

19. N 66, pp. 1–16.6. Kuo-Nan Liou. Introduction to atmospheric radiation, (1980) Academic

20. Press, 376 p.

21. O’Neill N.T., Ignatov A., Holben B.N. and Eck T.F. (2000) The lognormal distribution as a

22. reference for reporting aerosol optical depth statistics; Empirical tests using multi-year,

23. multi-site AERONET sunphotometer data, J. Geophys. Lett., 27, 20, 3333–3336.

24. Uliumdzhieva N., Chubarova N. and Smirnov A. (2005) Aerosol characteristics of the

25. atmosphere over moscow from cimel sun photometer data. Meteorology and Hydrology,

26. N 1, pp.48–57. (In Russian with English summary).

27. Sakerin S.M., Kabanov D.M., Panchenko M.V., Polkin V.V., Holben B.N., Smirnov A.V., Beresnev

28. S.A., Gorda S.Yu., Kornienko G.I., Nikolashkin S.V., Poddubnyi V.A., Tashchilin M.A. (2005)

29. Results of atmospheric aerosol monitoring in the Asian part of Russia in 2004 in theframework of AEROSIBNET program. «Atmospheric and oceanic optics», V 18, N 11, pp.

30. –975 (In Russian with English summary).

31. Smirnov A., Holben B.N., Eck T.F., Dubovik O. and Slutsker I. (2000) Cloud screening and

32. quality control algorithms for the AERONET data base. Remote Sens. Environ., N 73, pp.

33. –73349.

34. WMO, Radiation Commission, (1986) A preliminary cloudless standard atmosphere for

35. radiation computations, WCP-112, WMO/TD-24, World Clim. Res. Programme, Int. Assoc.

36. for Meteorol. and Atmos. Phys., Geneva, 53 pp.


For citation:


Chubarova N., Smirnov A., Holben B. AEROSOL PROPERTIES IN MOSCOW ACCORDING TO 10 YEARS OF AERONET MEASUREMENTS AT THE METEOROLOGICAL OBSERVATORY OF MOSCOW STATE UNIVERSITY. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2011;4(1):19-32. https://doi.org/10.24057/2071-9388-2011-4-1-19-32

Views: 194


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)