Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Active Layer Dynamics Near Norilsk, Taimyr Peninsula, Russia

https://doi.org/10.24057/2071-9388-2021-073

Full Text:

Abstract

This paper provides information on active layer thickness (ALT) dynamics, or seasonal thawing above permafrost, from a Circumpolar Active Layer Monitoring (CALM) site near the city of Norilsk on the Taimyr Peninsula (north-central Siberia) and the influences of meteorological and landscape properties on these dynamics under a warming climate, from 2005 to 2020. The average ALT in loamy soils at this 1 ha CALM site over the past 16 years was 96 cm, higher than previous studies from 1980s conducted at the same location, which estimated ALT to be 80 cm. Increasing mean annual air temperatures in Norilsk correspond with the average ALT increasing trend of 1 cm/year for the observation period. Active layer development depends on summer thermal and precipitation regimes, time of snowmelt, micro-landscape conditions, the cryogenic structure (ice content) of soils, soil water content leading up to the freezing period, drainage, and other factors. Differences in ALT, within various micro landscape conditions can reach 200% in each of the observation periods.

About the Authors

Valery I. Grebenets
Lomonosov Moscow State University
Russian Federation

Department of Cryolithology and Glaciology, Geographic Faculty

Leninskiye Gory 1, Moscow, 119991



Vasily A. Tolmanov
Lomonosov Moscow State University
Russian Federation

Department of Cryolithology and Glaciology, Geographic Faculty

Leninskiye Gory 1, Moscow, 119991



Dmitry A. Streletskiy
The George Washington University
United States

Department of Geography

2036 H Street, Washington, DC 20052



References

1. Alaska, U.S.A., in Proceedings of the Seventh International Conference.

2. Abramov A., Davydov S., Ivashchenko A., Karelin D., Kholodov A., Kraev G., Lupachev A., Maslakov A., Ostroumov V., Rivkina E., Shmelev D., Sorokovikov V., Tregubov O., Veremeeva A., Zamolodchikov D., and Zimov S. (2019). Two decades of active layer thickness monitoring in northeastern Asia. Polar Geography, 0(0), 1-17, DOI: 10.1080/1088937X.2019.1648581.

3. Bonnaventure P.P. and Lamoureux S.F. (2013). The active layer: A conceptual reviewof monitoring, modelling techniques and changes in a warming climate. Progress in Physical Geography, DOI: 10.1177/0309133313478314.

4. Boyd D.W. (1973). Normal freezing and thawing degree days for Canada: 1931–1960. Downsview. Ontario, Canada: CLI 473 Publ.

5. Brown J., Nelson F.E. and Hinkel K.M. (2000). The circumpolar active layer monitoring (CALM) program research designs and initial results. Polar Geography, 3, 165-258.

6. Fagan J.E. and Nelson F.E. (2017). Sampling designs in the circumpolar active layer monitoring (CALM) program. Permafrost and Periglacial Processes, 28(1), 42-51.

7. French H.M. (1999) Past and present permafrost as an indicator of climate.

8. Change. Polar Research, 18:2, 269-274, DOI: 10.3402/polar.v18i2.6584.

9. Frost G.V., Epstein H.E., Walker D.A., Matyshak G. and Ermokhina K. (2018). Seasonal and long-term changes in active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems, 21(3), 507-520.

10. Gmurman V.E. (2010). Probability theory and mathematical statistics: Textbook for universities. Moscow, Russia: Vyshaya shkola Publ. (In Russian) Golden Software, Inc., SURFER for Windows, version 7 User’s Guide, Golden, Colo., 1999.

11. Grebenets V.I., Streletskiy D.A., Shiklomanov N.I., Kerimov A.G., Ostroumova E.A., Konovalov Y.V. and Andruschenko F.D. (2016). Thermal state dynamics of permafrost basement on engineering objects in cryolithozone of Russia. (2016). In: Book of abstracts of XI International Conference On Permafrost Exploring Permafrost in a Future Earth. Potsdam, Germany: Bibliothek Wissenschaftspark Albert Einstein Telegrafenberg, 1080-1083, DOI: 10.2312/GFZ.LIS.2016.001.

12. Harlan R.L. and Nixon J.F. (1978). Ground thermal regime. In: O. Andersland and D. Anderson ed., Geotechnical Engineering for Cold Regions. New York: Mc Craw Hill, 103-163.

13. Hinkel K.M. and Nelson F.E. (2003). Spatial and temporal patterns of active layer thickness at Circumpolar Active Layer Monitoring (CALM) sites in northern Alaska, 1995–2000. Journal of Geophysical Research, 108(D2), 8168, DOI:10.1029/2001JD000927.

14. Ivchenko G.I. and Medvedev Y.I. (2010). Introduction to mathematical statistics. Moscow: LKI Publ. (In Russian).

15. Kaverin D.A., Pastukhov A. V. and Mazhitova G.G. (2014). Temperature regime of tundra soils and underlying permafrost (Northeastern European Russia). Earth’s Cryosphere, 18(3), 23-32. (In Russian).

16. Kaverin D.A., Pastukhov A.V., Novakovsky A.B., Biasi K., Maruschak M. and Elsakov V.V. (2019). Landscape and climatic factors impacting the thaw depth in soils of permafrost peat plateaus (on the example of Calm R52 site). Earth’s Cryosphere, 23(2), 62-71, DOI: 10.21782/KZ1560-7496-2019-2(62-71) (In Russian).

17. Kirdyanov A.V., Hagedorn F., Knorre A.A., Fedotova E.V., Vaganov E.A., Naurzbaev M.M. and Rigling A. (2012). 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia, Boreas, 41(1), 56-67.

18. Konischev V.N. (2011). The response of permafrost to climate warming. Earth’s Cryosphere, 15(4), 15-18 (In Russian with English summary).

19. Kudryavtsev V. (1954). Thermal regime of the upper horizons of rocks Moscow: Publ. of the Academy of Sciences of the USSR (In Russian).

20. Kudryavtsev V. and Dostovalov V. (1967). Obschee merzlotovedenie. Moscow: Publ. of Moscow State University (In Russian).

21. Laval, Laval, Quebec, 1998

22. Laval, Laval, Quebec, 1998

23. Luo D., Wu Q., Jin H., Marchenko S.S., Lü L. and Gao S. (2016). Recent changes in the active layer thickness across the northern hemisphere. Environmental Earth Sciences, 75(7), DOI: 10.1007/s12665-015-5229-2.

24. Maslakov A., Shabanova N., Zamolodchikov D., Volobuev V. and Kraev G. (2017). Permafrost Degradation within Eastern Chukotka CALM Sites in the 21st Century Based on CMIP5 Climate Models. Geosciences, 9(5), 232, DOI: 10.3390/geosciences9050232.

25. Mazhitova G.G. and Kaverin D.A. (2007). Thaw depth dynamics and soil surface subsidence at a Circumpolar Active Layer Monitoring (CALM) site, the European North of Russia. Earth’s Cryosphere, 11, 20-30 (In Russian).

26. Mazhitova G.G. & Kaverin Dmitry. (2007). Thaw depth dynamics and soil surface subsidence at a Circumpolar Active Layer Monitoring (CALM) site, the European North of Russia. Earth’s Cryosphere. 11. 20-30. Miller L.L., K.M. Hinkel, F.E. Nelson, R.F. Paetzold and S.I. Outcalt, Miller L. L., K. M. Hinkel F. E. Nelson R. F. Paetzold and S. I. Outcalt,ТMoskalenko N.G. (1999). Anthropogenic dynamics of vegetation of the plains of the permafrost zone of Russia. Novosibirsk: Nauka Publ. (In Russian)

27. Nelson F.E. and Outcalt S.I. (1987). A computational method for prediction and regionalization of permafrost. Arctic and Alpine Research, 19(3), 279-288.

28. Nelson F.E., Outcalt S.I., Brown J., Shiklomanov N.I. and Hinkel K.M. (1998). Spatial and Temporal Attributes of the Active-Layer Thickness Record, Barrow, Alaska, U.S.A. Permafrost – 7th International Conference, 55, 797-802.

29. Nyland K.E., Shiklomanov N.I. and Streletskiy D.A. (2017) Climatic – and anthropogenic-induced land cover change around Norilsk, Russia, Polar Geography, 40(4), 257-272, DOI: 10.1080/1088937X.2017.1370503.

30. General Permafrost Science (geocryology). (1978). Moscow: Publ. of Moscow State University (In Russian).

31. General Permafrost Science. (1974). Novosibirsk: Nauka Publ. (In Russian) on Permafrost, vol. 1, pp. 731 – 737, Cent. d’Etud. Nordiques, Univ.

32. Popov A.I., Arkhangelov A.A., Velikotsky M.A., Zhigarev L.A., Konishchev V.N., Marakhtanov V.P., Tumel N.V. and Shpolyanskaya N.A. (1989). Regional cryolithology. Moscow: Publ. of Moscow State University (In Russian)

33. Sheveleva N.S. and Homichevskaya L.S. (1967). Geocryological conditions of the Yenisei north. Moscow: Nauka Publ. (In Russian)

34. Shiklomanov N., Streletskiy D., Little J. and Nelson F. (2013). Isotropic thaw subsidence in undisturbed permafrost landscapes. Geophysical Research Letters, 40, 6356-6361.

35. Smith S.L., Wolfe S.A., Riseborough D.W. and Nixon M. (2009) Active-Layer Characteristics and Summer Climatic Indices, Mackenzie Valley, Northwest Territories, Canada. Permafrost and Periglacial processes, 20, 201-220

36. SP 25.13330.2012 Basements and foundations on permafrost soils (In Russian) Spatial and temporal patterns of soil moisture and thaw depth at Barrow,

37. Streletskiy D.A., Shiklomanov N.I., Little J.D. and Nelson F.E. (2017). Thaw subsidence in undisturbed tundra landscapes, Barrow, Alaska, 1962–2015. Permafrost and Periglacial Processes, 28(3), 566-572.

38. Streletskiy D.A., Sherstiukov A.B., Frauenfeld O.W. and Nelson F.E. (2015). Changes in the 1963–2013 shallow ground thermal regime in Russian permafrost regions. Environmental Research Letters, 10(12), 125005.

39. SURFER for Windows, version 7 User’s Guide. (1999). Colorado: Golden Software Inc.

40. GWU.еdu/calм (2021). СALM program web-site. [online] Available at: https://www2.gwu.edu/~calm/ [Accessed 1 May 2021].

41. ArсtiсDаta.iо (2021). Arctic Data Center. [online] Available at: https://arcticdata.io/catalog/view/doi:10.18739/A2KP7TS45 [Accessed 1 May 2021].


Review

For citations:


Grebenets V.I., Tolmanov V.A., Streletskiy D.A. Active Layer Dynamics Near Norilsk, Taimyr Peninsula, Russia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2021;14(4):55-66. https://doi.org/10.24057/2071-9388-2021-073

Views: 271


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)