Advanced search

Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions

Full Text:


The lakes of the Arctic lowlands are both the unique indicator and the result of climatic and permafrost changes. Remote sensing methods and field measurements were used to consider the patterns and features of the morphometric indicators dynamics of the Anadyr lowland lakes over 65 years. We analyzed the parameters of 36 lakes with an area of 0.02–0.3 km2 located in the bottoms of drained lake basins, in river floodplains, on sea-shore terraces. Field studies were conducted on 22 typical lakes. The considered dynamics of seasonal thawing are based on the monitoring of the active layer for 1994–2020. Due to an increase of mean annual air temperature by 1.8 °C, as well as an increase and then a decrease in the mean annual precipitation by 135 mm, the average share of a lake area in the study area decreased by 24%. It is shown for the first time that cryogenic processes of the lacustrine coastal zone affect the change in the area of lakes simultaneously with the influence of precipitation and air temperature. Based on field observations, we considered two causes of natural drainage: discharge of the lakes through newly formed thermokarst and thermoerosional surface flow channels and decrease in suprapermafrost groundwater recharge as a result of changing depth of seasonally thawed active layer in the coastal zone.

About the Authors

Оleg D. Tregubov
North-Eastern Interdisciplinary Scientific Research Institute N.A. Shilo FEB RAS
Russian Federation

16 Portovaya St., 685000, Magadan

Vladimir E. Glotov
North-Eastern Interdisciplinary Scientific Research Institute N.A. Shilo FEB RAS
Russian Federation

16 Portovaya St., 685000, Magadan

Pavel Ya. Konstantinov
Melnikov Permafrost Institute SB RAS
Russian Federation

36 Merzlotnaya St., 677010, Yakutsk

Vladimir V. Shamov
Pacific Geographical Institute FEB RAS; Melnikov Permafrost Institute SB RAS
Russian Federation

Radio 7, 690041, Vladivostok,

36 Merzlotnaya St., 677010, Yakutsk


1. Abramov A., Davydov S., Ivashchenko A., Karelin D., Kholodov A., Kraev G., Lupachev A., Maslakov A., Ostroumov V., Rivkina E., Shmelev D., Sorokovikov V., Tregubov O., Veremeeva A., Zamolodchikov D., Zimov S. (2019). Two decades of active layer thickness monitoring in northeastern Asia // Polar Geography, 42(3), 1-17.

2. Andresen C.G. and Lougheed V.L. (2015). Disappearing of Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65-year period (1948–2013) // J. Geophys. Res. Biogeosci, 120, 466-479, DOI: 10.1002/2014JG002778.

3. Arp C.D., Jones B.M., Liljedahl A.K., Hinkel K.M., and Welker J.A. (2015). Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes // Water Resources, 51, 9379–9401, DOI: 10.1002/2015WR017362.

4. Boike J., Grau T., Heim B., Günther F. et al. (2016). Satellite-derived changes in the permafrost landscapes of Central Yakutia, 2000–2011: Wetting, drying, and fires // Global Planet. Change, 139, 116–127, DOI: 10.1016/j.gloplacha.2016.01.001.

5. Bryksina N.A., Polishchuk Yu.M. (2015). Analysis of changes in the number of thermokarst lakes in the permafrost zone of Western Siberia based on satellite images // Cryosphere of the Earth, XIX(2), 114-120.[Bryksina N.A., Polishchuk Yu.M. Analiz izmeneniya chislennosti termokarstovykh ozer v zone mnogoletney merzloty Zapadnoy Sibiri na osnove kosmicheskikh snimkov // Kriosfera Zemli. 2015. T. XIX. № 2. C. 114–120.]

6. Chen M., Rowland J.C., Wilson C.J. et al. (2013). The importance of natural variability in lake areas on the detection of permafrost degradation: a case study in the Yukon Flats, Alaska // Permafrost and Periglacial Processes, 24, 224-240, DOI: 10.1002/ppp.1783.

7. Chukotka: Natural-economic essay (1996). Moscow: «Art-Litex», 370.

8. Chukotka: Prirodno-ekonomicheskiy ocherk (1996). Moscow: «Art-Litex», 370.

9. Dneprovskaya V.P., Bryksina N.A., Polishchuk Yu.M. (2009). Izucheniye izmeneniy termokarsta v zone preryvistogo rasprostraneniya vechnoy merzloty Zapadnoy Sibiri na osnove kosmicheskikh snimkov // Issledovaniye zemli iz kosmosa, 4, 1-9.

10. Dneprovskaya V.P., Bryksina N.A., Polishchuk Yu.M. (2009). Study of changes in thermokarst in the zone of discontinuous distribution of permafrost in Western Siberia on the basis of satellite images // Earth research from space, 4, 1-9.

11. General Permafrost Science (1978). / Ed. by V.A. Kudryavtseva. – M.: Publishing house of Moscow University, 464.

12. Geofizika i antropogennyye izmeneniya landshaftov Chukotki (1987). / I.V. Ignatenko, I.M. Papernov, B.A. Pavlov, M.N. Zamoshch, I.N. Skorodumov. Moscow: Nauka, 271.

13. Geophysics and anthropogenic changes in the landscapes of Chukotka (1987). I.V. Ignatenko, I.M. Papernov, B.A. Pavlov, M.N. Zamoshch, I.N. Skorodumov. Moscow: Nauka, 271.

14. Hinkel K.M., Frohn R.C., Nelson F.E., Eisner W.R., and Beck R.A. (2005). Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic coastal plain, Alaska // Permafrost and Periglacial Processes, 16(4), 327-341.

15. Jones B.M., and Arp C.D. (2015). Observing a Catastrophic Thermokarst Lake Drainage in Northern Alaska // Permafrost and Periglac. Process, 26, 119-128, DOI: 10.1002/ppp.1842.

16. Jones B.M., Grosse G., Arp C.D., Jones M.C., Anthony K.W., Romanovsky V.E. (2011). Modern thermokarst lake dynamics in the continuous permafrost zone, Northern Seward Peninsula, Alaska // Journal of Geophysical Research, 116: G00M03, DOI: 10.1029/2011JG001666.

17. Kapralova V.N. (2014). Regularities of the development of thermokarst processes within the lacustrine-thermokarst plains (based on the approaches of the mathematical morphology of the landscape): dis. ... Cand. geological miner. Sciences: 25.00.36. Moscow, 109.

18. Kapralova V.N. (2014). Zakonomernosti razvitiya termokarstovykh protsessov v predelakh ozer-no-termokarstovykh ravnin (na osnove podkhodov matematicheskoy morfologii land-shafta): dis. ... kand. geol.-miner. nauk: 25.00.36. Moscow, 109.

19. Kislov A.V., Grebenets V.I., Evstigneev V.M., Konishchev V.N., Sidorova M.V., Surkova G.V., Tumel N.V. (2011). Consequences of possible climate warming in 21st century in the north of Eurasia // Bulletin of Moscow University. Series 5. Geography, 3. [online] URL: (date of access: 12.07.2021).

20. Kislov A.V., Grebenets V.I., Yevstigneyev V.M., Konishchev V.N., Sidorova M.V., Surkova G.V., Tumel N.V. (2011). Posledstviya vozmozhnogo potepleniya klimata v XXI veke na severe Yevrazii // Vestnik Moskovskogo universiteta. Seriya 5. Geografiya, 3. [online] URL: (data obrashcheniya: 12.07.2021).]

21. Konischev V.N. (2011). Response of permafrost to climate warming // Cryosphere of the Earth, XV(4), 15-18.

22. Konishchev V.N. (2011). Reaktsiya vechnoy merzloty na potepleniye klimata // Kriosfera Zemli, XV(4), 15-18.

23. Krivoshchekov V.S. (2000). Land reclamation and land development in Chukotka. Magadan: Chukotka branch of SVKNII FEB RAS, 274.

24. Krivoshchekov V.S. (2000). Melioratsiya i osvoyeniye zemel na Chukotke. Magadan: Chukotskiy filial SVKNII DVO RAN, 274.

25. Labrecque S., Lacelle D., Duguay C.R., Lauriol B., Hawkings J. (2009). Contemporary (1951–2001) evolution of lakes in the Old Crow Basin, Northern Yukon, Canada: remote sensing, numerical modeling, and stable isotope analysis // Arctic, 62(2), 225-238.

26. Lantz T., Turner K. (2015). Changes in lake area in response to thermokarst processes and climate in Old Crow Flats, Yukon // J. Geophys. Res. Biogeosci., 120, 513-524, DOI: 10.1002/2014JG002744.

27. Luo J., Niu F., Lin. Z., Liu M., Yin G. (2015). Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai–Tibet Plateau, China // Science Bulletin, 60(5), 556-564, DOI: 10.1007/s11434-015-0730-2.

28. Lyubomirov A.S. (1990). Chukotka permafrost lakes. Yakutsk: Permafrost Institute of the Siberian Branch of the USSR Academy of Sciences, 176.

29. Lyubomirov A.S. (1990). Ozera kriolitozony Chukotki. Yakutsk: In-t merzlotovedeniya SO AN SSSR, 176.

30. Marsh P., Russell M., Pohl S., Haywood H., Onclin C. (2009). Changes in thaw lake drainage in the Western Canadian Arctic from 1950 to 2000 // Hydrol. Process, 23, 145-158.

31. Nesterova N.V., Makarieva O.M., Fedorov A.N., Shikhov A.N. (2020). Geocryological factors of activation of thermokarst processes in Central Yakutia / Collection of reports of FOURTH VINOGRADOVSKIE READINGS. HYDROLOGY FROM KNOWLEDGE TO WORLD VIEW (St. Petersburg, October 23–31, 2020). St. Petersburg: LLC Publishing house VVM, 739–744.

32. Nesterova N.V., Makaryeva O.M., Fedorov A.N., Shikhov A.N. (2020). Geokriologicheskiye fak-tory aktivizatsii termokarstovykh protsessov v Tsentralnoy Yakutii / Sbornik dokladov CHETVERTYYE VINOGRADOVSKIYE CHTENIYA. GIDROLOGIYA OT POZNANIYA K MIROVOZZRENIYU (Sankt-Peterburg, October 23–31, 2020). Sankt-Peterburg: OOO Izdatelstvo VVM, 739-744.

33. Newest Deposits and Paleogeography of the Pleistocene of Chukotka (1980). / Ed. by P.A. Kaplina. Moscow: Nauka, 295.

34. Nitze I., Cooley S. W., Duguay C. R., Jones B. M., and Grosse G. (2020). The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future, The Cryosphere, 14, 4279-4297, DOI: 10.5194/tc-14-4279-2020.

35. Noveyshiye otlozheniya i paleogeografiya pleystotsena Chukotki (1980). / Pod red. P.A. Kaplina. M.: Nauka, 295.

36. Postnikov A.N. (2014). Distribution of evaporation from the water surface on the territory of Russia // Scientific notes of the Russian State Hydrometeorological University, 36, 22-28.

37. Postnikov A.N. (2014). O raspredelenii ispareniya s vodnoy poverkhnosti na territorii Rossii // Uchenyye zapiski Rossiyskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 36, 22-28.

38. Rodionova T.V. (2013) Issledovaniye dinamiki termokarstovykh ozer v razlichnykh rayonakh kriolitozony Rossii po kosmicheskim snimkam: dis. ... kand. geogr. nauk: 25.00.33. Moscow, 196.

39. Rodionova T.V. (2013). Investigation of the dynamics of thermokarst lakes in different regions of the permafrost zone of Russia using satellite images: Thesis of PhD in geography: 25.00.33. Moscow, 196.

40. Romanenko F.A. (1999). Dinamika ozernykh kotlovin na tsentralnom Yamale // Erozionnyye protsessy tsentralnogo Yamala. SPb., Izd-vo Gomelskogo TSNTDI, 1999. 350

41. Romanenko F.A. (1999). Dynamics of lake basins in the central Yamal // Erosion processes of central Yamal. St. Petersburg., Publishing house of the Gomel TsNTDI, 350.

42. Ruzanov V.T. (2014). Kharakter ozer Anadyrskoy nizmennosti i ikh osvoyeniye // Inzhenernyye izyskaniya, 7, 68-72.

43. Ruzanov V.T. (2014). The nature of the lakes of the Anadyr lowland and their development // Engineering research, 7. 68-72.

44. Salva A.M. (2020). Otslezhivaniye uchastkov termokarstovykh proyavleniy po kosmicheskim snimkam (na primere trassy magistralnogo vodovoda v Tsentralnoy Yakutii) // Ark-tika i Antarktika, 2, 126-137.

45. Salva A.M. (2020). Tracking areas of thermokarst manifestations using satellite images (the case of the main water conduit route in the Central Yakutia) // Arctic and Antarctica, 2, 126-137.

46. Sannikov G.S. (2012). Cartometric studies of thermokarst lakes on the territory of the Bovanenkovskoye field, Yamal Peninsula // Cryosphere of the Earth, XVI(2), 30-37.

47. Sannikov G.S. (2012). Kartometricheskiye issledovaniya termokarstovykh ozer na territorii Bovanenkovskogo mestorozhdeniya, poluostrov Yamal // Kriosfera Zemli, XVI(2), 30-37.

48. Tomirdiaro C.B., Ryabchun V.K. (1973). Ozernyy termokarst na Nizhne-Anadyrskoy nizmenno-sti // Dokl. II Mezhd. konf. po merzlotovedeniyu. Yakutsk, 58-67.

49. Tomirdiaro C.B., Ryabchun V.K. (1999). Lake thermokarst on the Lower Anadyr lowland // Reports of 2nd Int. conf. on permafrost. Yakutsk, 58-67.

50. Tomirdiaro S.V. (1972). Permafrost and the development of mountainous countries and lowlands. Magadan, 174.

51. Tomirdiaro S.V. (1972)Vechnaya merzlota i osvoyeniye gornykh stran i nizmennostey. Magadan, 174.

52. Tregubov O.D. (2010). Reconstruction of glacial processes and the search for water supply sources for the Zapadno-Ozernoye gas field // Bulletin of the North-Eastern Scientific Center of the Far Eastern Branch of the Russian Academy of Sciences, 4, 20-27.

53. Tregubov O.D. (2010). Rekonstruktsiya lednikovykh protsessov i poiski istochnikov vodosnab-zheniya dlya Zapadno-Ozernogo gazovogo mestorozhdeniya // Vestnik Severo-Vostochnogo nauchnogo tsentra DVO RAN, 4, 20-27.

54. Tregubov O.D. (2019). The nature of short-period fluctuations in the depth of seasonal thawing // Geoecology. Engineering geology. Hydrogeology. Geocryology, 4, 3-17.

55. Tregubov O.D., Uyagansky K.K., Nuteveket M.A. (2020). Monitoring of permafrost-climatic conditions of the Anadyr lowland // Geography and natural resources, 2, 143-152.

56. Veremeeva A., Nitze I., Günther F., Grosse G., Rivkina E. (2021). Geomorphological and Climatic Drivers of Thermokarst Lake Area Increase Trend (1999–2018) in the Kolyma lowland Yedoma Region, North-Eastern Siberia. Remote Sensing, 13(2), 178, DOI: 10.3390/rs13020178. Veremeeva A.A. (2017). Formation and modern dynamics of the lacustrine-thermokarst relief of the tundra zone of the Kolyma lowland according to space survey data: Thesis of PhD in geography: 25.00.25,134.

57. Veremeyeva A.A. (2017). Formirovaniye i sovremennaya dinamika ozerno-termokarstovogo relyefa tundrovoy zony Kolymskoy nizmennosti po dannym kosmicheskoy syemki: dis. ... kand. geogr. nauk: 25.00.25 Pushchino, 134.


For citations:

Tregubov О.D., Glotov V.E., Konstantinov P.Y., Shamov V.V. Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2021;14(4):41-54.

Views: 326

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)