Advanced search

Genetic Identification Of Ground Ice By Petrographic Method

Full Text:


The advantages and limitations of the petrography method and the relevance of its use for the study of natural ice are reviewed in the present work. The petrographic method of ground ice study is often used for solving paleogeographic issues. The petrofabric analysis of ground ice is not only useful for descriptive purposes but, like the study of cryostructures, helps to infer growth processes and conditions. Different types of natural ice have specific features that can help us to determine ice genesis. Surface ice, such as glacier ice is often presented by foliation formed by large crystals (50-60 mm); lake ice is characterised by the upper zone of small (6 mm x 3 mm) dendritic and equigranular crystals, which change with increasing depth to large (may exceed 200 mm) columnar and prismatic crystals; segregated ice is composed by crystals forming foliation. Ground ice, such as ice wedge is presented by vertical-band appearance and small crystals (2-2.5 mm); closed-cavity ice is often distinguished by radial-ray appearance produced by elongated ice crystals; injection ice is composed by anhedral crystals, showing the movement of water; snowbank ice is presented by a high concentration of circular bubbles and small (0.1-1 mm) equigranular crystals; icing is described by foliation and mostly columnar crystals. Identification of the origin of ground ice is a complicated task for geocryology because it is difficult to distinguish different types of ground ice based on only visual explorations. The simplest way to get an ice texture pattern is by using polarized light. Distinctions between genetic types of ground ice are not always made in studies, and that can produce erroneous inferences. Petrography studies of an ice object are helpful to clarify the data interpretation, e.g., of isotopic analyses. It is particularly relevant for heterogeneous ice wedges’ study.

About the Authors

Yana V. Tikhonravova
Melnikov Permafrost Institute, Siberian Branch, Russian Academy of Sciences
Russian Federation

Yakutsk, 677010

Viktor V. Rogov
Lomonosov Moscow State University
Russian Federation

Moscow, 119991

Elena A. Slagoda
Earth Cryosphere Institute Tyumen Scientific Centre Siberian Branch, Russian Academy of Sciences
Russian Federation

Tyumen, 625026


1. Bonath V., Petrich C., Sand B., Fransson L. and Cwirzen A. (2018). Morphology, internal structure and formation of ice ridges in the sea around Svalbard. Cold Regions Science and Technology, 155, 263-279, DOI: 10.1016/j.coldregions.2018.08.011.

2. Bruneau S., Sullivan A., Zhang Z. and Colborne B. (2015). Ice-microtome design for procurement and crystal analysis of ice thin sections. 25th CANCAM.

3. Calmels F., Clavano W.R. and Froese D.G. (2010). Progress on X-ray computed tomography ( CT) scanning in permfrost studies. 63rd Canadian Geotechnical Conference & 6th Canadian Permafrost Conference, January, 1353-1358.

4. Coulombe S. and Fortier D. (2015). Cryofacies and cryostructures of massive ice found on Bylot Island , Nunavut. 68e Conférence Canadienne de Géotechnique et 7e Conférence Canadienne Sur Le Pergélisol, 20 Au 23 Septembre 2015, Québec, Québec., August 2016.

5. Coulombe S., Fortier D., Lacelle D., Kanevskiy M. and Shur Y. (2019). Origin, burial and preservation of late Pleistocene-age glacier ice in Arctic permafrost (Bylot Island, NU, Canada). Cryosphere, 13(1), 97-111, DOI: 10.5194/tc-13-97-2019.

6. Dillon M., Fortier D., Kanevskiy M. and Shur Y. (2008). Dillon-2008. Ninth International Conference on Permafrost, 361-366.

7. Diprinzio C.L., Wilen L.A., Alley R.B., Fitzpatrick J.J., Spencer M.K. and Gow A.J. (2005). Fabric and texture at Siple Dome, Antarctica. Journal of Glaciology, 51(173), 281-290, DOI: 10.3189/172756505781829359.

8. Everdingen, R. O. van, ed. (2005). IPA – Multi-language glossary of permafrost and related ground - ice terms.

9. Faria S.H., Weikusat I. and Azuma N. (2014a). The microstructure of polar ice. Part I: Highlights from ice core research. Journal of Structural Geology, 61, 2–20, DOI: 10.1016/j.jsg.2013.09.010.

10. Faria S.H., Weikusat I. and Azuma N. (2014b). The microstructure of polar ice. Part II: State of the art. Journal of Structural Geology, 61, 21-49, DOI: 10.1016/j.jsg.2013.11.003.

11. Fortier D., Kanevskiy M., Shur Y., Stephani E., Dillon M. and Jorgenson M.T. (2012). Cryostructures of Basal Glacier Ice as an Object of Permafrost Study: Observations from the Matanuska Glacier, Alaska. 10th International Conference on Permafrost, 107-112, DOI: 10.13140/2.1.4876.2569.

12. French H.M. (2007). The Periglacial Environment. In: Angewandte Chemie International Edition, 6(11), 951-952. , third. Addison Wesley Longman Limited, John Wiley and Sons; Hoboken.

13. French H.M. and Harry D.G. (1988). Nature and origin of ground ice, Sandhills Moraine, southwest Banks Island, Western Canadian Arctic. Journal of Quaternary Science, 3(1), 19-30, DOI: 10.1002/jqs.3390030105.

14. French H.M. and Harry D.G. (1990). Observations on buried glacier ice and massive segregated ice, western arctic coast, Canada. Permafrost and Periglacial Processes, 1(1), 31-43, DOI: 10.1002/ppp.3430010105.

15. French H.M. and Pollard W.H. (1986). Ground-ice investigations, Klondike District, Yukon Territory. Canadian Journal of Earth Sciences, 23, 550-560.

16. Galanin A.A. (2021). About the incorrectness of Yu.K. Vasil’chuk’s method for the reconstruction of paleotemperatures using isotope composition of wedge ice. Review of the article by Yu.K. Vasil’chuk, A.C. Vasil’chuk “Air January paleotemperature reconstruction 48–15 calibrat. Earth’s Cryosphere, 2, 62–75, DOI: 10.15372/KZ20210206 (in Russian with English summary).

17. Gell A.W. (1973). Ice petrofabrics, Tuktoyaktuk, N.W.T., Canada. Liverpool University.

18. Gell A.W. (1975). Underground ice in permafrost, Mackenzie. Delta -Tyktoyaktuk Peninsula. N.W.T. the University of British Columbia.

19. Gilbert G.L., Kanevskiy M. and Murton J.B. (2016). Recent Advances (2008–2015) in the Study of Ground Ice and Cryostratigraphy. Permafrost and Periglacial Processes, 27(4), 377-389, DOI: 10.1002/ppp.1912.

20. Golubev V.N. (2000). Structural Glaciology. Cogelation ice structure. MSU. (In Russian).

21. Golubev V.N. (2014). Formation of ice cover on fresh-water reservoirs and water courses. Vestnik MGU. Series 5. Geography, 2, 9-16. (In Russian).

22. Gorgutsa R., Ksenofontova D. and Sokolov A. (2016). The Effect of S alinity and Structure of Ice on Its Strength. Polar Mekhanics, 43–53. (In Russian).

23. Gow A.J., Meese D.A., Alley R.B., Fitzpatrick J.J., Anandakrishnan S., Woods G.A. and Elder B.C. (1997). Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: A review. Journal of Geophysical Research: Oceans, 102(C12), 26559-26575, DOI: 10.1029/97JC00165.

24. Hill J.R. and Lasca N.P. (1975). An improved method for determining ice fabrics. Journal of Glaciology, 10(58), 113-138.

25. Hudleston P.J. (2015). Structures and fabrics in glacial ice: A review. Journal of Structural Geology, 81, 1-27, DOI: 10.1016/j.jsg.2015.09.003.

26. Kanevskiy M., Shur Y., Jorgenson T., Brown D.R.N., Moskalenko N., Brown J., Walker D.A., Raynolds M.K. and Buchhorn M. (2017). Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska. Geomorphology, 297, 20-42, DOI: 10.1016/j.geomorph.2017.09.001.

27. Katasonov E. and Ivanov M. (1973). Cryolithology of Central Yakutia. Guidebook of 2nd International Conference on Permafrost. (In Russian).

28. Katasonov E.M. (1975). Frozen-ground and facial analysis of Pleistocene deposits and paleogeography of Central Yakutia. Biuletyn Peryglacjalny, 24, 33-40. (In Russian).

29. Kawano Y. and Ohashi T. (2006). Numerical simulation of development of sea ice microstructure by Voronoi dynamics technique. The 18th IAHR International Symposium on Ice, 97-103.

30. Kipfstuhl S., Hamann I., Lambrecht A., Freitag J., Faria S.H., Grigoriev D. and Azuma N. (2006). Microstructure mapping: a new method for imaging deformation-induced microstructural features of ice on the grain scale. Journal of Glaciology, 52(178), 398-406, DOI: 10.3189/172756506781828647.

31. Kotlyakov V.M., ed. (1984). Glaciological dictionary. Gidrometeoizdat. (In Russian).

32. Lachenbruch A.H. (1962). Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Geological Society of America Special Papers, 70, 69.

33. Langway C.C. (1958). Ice fabrics and the universal stage. In: US Amy, Snow and Ice Research Establishment, 62.

34. Leffingwell E.K. (1915). Ground Ice-Wedge – the Dominant Form of Ground Ice on the North Coast of Alaska. J. Geol., 23(7), 635-654.

35. Lein A.Y., A.S. S., Leibman M.O. and Perednya D.D. (2005). Ice Record: an Example of Deciphering Using Isotopic Tracers. Priroda, 7, 25-34.

36. Mackay J.R. (2000). Thermally induced movements in ice-wedge polygons, western Arctic coast: a long-term study. Geographie Physique et Quaternaire, 54(1), 41-68.

37. Minchew B.M., Meyer C.R., Robel A.A., Gudmundsson G.H. and Simons M. (2018). Processes controlling the downstream evolution of ice rheology in glacier shear margins: case study on Rutford Ice Stream, West Antarctica. Journal of Glaciology, 64(246), 583-594, DOI: 10.1017/jog.2018.47.

38. Murton J. (2013). Permafrost and periglacial features: ice wedges and ice-wedge casts. In: Encyclopedia of Quaternary Science, 436-451. Elsevier, DOI: 10.1016/b978-0-444-53643-3.00097-2.

39. Opel T., Meyer H., Wetterich S., Laepple T., Dereviagin A. and Murton J. (2018). Ice wedges as archives of winter paleoclimate: A review. Permafrost and Periglacial Processes, 29(3), 199-209, DOI: 10.1002/ppp.1980.

40. Orekhov P.T., Popov K.A., Slagoda E.A., Kurchatova A.N., Tikhonravova Y.V., Opokina O.L., Simonova G.V. and Melkov V.N. (2017). Frost mounds of bely island in coastal marine settings of the Kara Sea. Earth’s Cryosphere, 21(1), 46-56, DOI: 10.21782/KZ1560-7496-2017-1(46-56). (In Russian).

41. Ostrem G. (1963). Comparative crystallographic studies on ice from ice-cored moraines, snowbanks and glaciers. Geografiska Annaler, 45(4), 210-240.

42. Petrich C. and Eicken H. (2010). Growth, Structure and Properties of Sea Ice. In: N. T. David and S. D. Gerhard eds., Sea Ice , Second, 23-78. Blackwell.

43. Pewe T.L. (1967). Quaternary geology of Alaska. In: Angewandte Chemie International Edition, 6(11), 951-952. United States Government Printing Office, DOI: 10.3133/pp835.

44. Pollard W. (1990). The nature and origin of ground ice in the Herschel Island area, Yukon Territory. The Fifth Canadian Conference on Permafrost, 23-30.

45. Pollard W.H. and French H.M. (1985). The Internal Structure and Ice Crystallography of Seasonal Frost Mounds. Journal of Glaciology, 31(108), 157-162, DOI: 10.3189/s0022143000006407.

46. Popov A.I. (1955). The origin and development of a thick fossil ice. USSR Academy of Sciences. (In Russian).

47. Popov A.I., Rozembaum G.E. and Tumel’ N.V. (1985). Cryolithology. MSU. (In Russian).

48. Rogov V.V. (1996). Classification of structures of ground ice. Vestnik MGU. Series 5. Geography, 3, 93-101. (In Russian).

49. Rogov V.V. (2009). Fundamentals of Cryogenesis. Geo. (In Russian).

50. Romanovsky N.N. (1959). On the question about syngenetic ice wedge formation. Glaciological Studies during the MGG (1), 83-86. (In Russian).

51. Rothschild A. (1985). Ground ,Ice Petrography, Sand Hills Moraine, Southern Banks Island, N.W.T. In: Psychology. University of Ottawa.

52. Savel’ev B.A. (1963). Guide to the study of the ice characteristic. Moscow State University. (In Russian).

53. Savel’ev B.A. (1980). Structure and Composition of Natural Ice. Moscow State University. (In Russian).

54. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P. and Cardona A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682, DOI: 10.1038/nmeth.2019.

55. Seligman G. (1950). Instruments and Methods: Improvement in Making Rubbings of Glacier Crystals. Journal of Glaciology, 1(7), 361-361, DOI: 10.3189/S0022143000012533.

56. Sher A. and Kaplina T. (1979). Late Cenozoic of the Kolyma Lowland. Tour XI Guidebook, XIV Pacific Science Conference, Khabarovsky, USSR Academy of Sciences, 115. (In Russian).

57. Shumskii P. (1960). About ice wedge formation. In: Articles collection of Melnikov Permafrost Institute AS USSR, 81-97.

58. Shumskii P.A. (1964). Principles of Structural Glaciology. Dover. (In Russian).

59. Slagoda E., Opokina O., Rogov V. and Kurchatova A. (2012). Structure and genesis of the underground ice in the NeopleistoceneHolocene sediments of Marre-Sale Cape, Western Yamal. Earth’s Cryosphere, 16(2), 9-22. (In Russian with English summary).

60. Solomatin V.I. (1965). About the ice-wedge structure. In: Ground ice, 46-72. Moscow State University. (In Russian).

61. Solomatin V.I. (1986). Petrology of Ground Ice. Academy Nauk. (In Russian).

62. Solomatin V.I. (2013). Physics and geography of underground glaciations. Geo. (In Russian).

63. Solomatin V.I. and Kryuchkov M.V. (1981). Ice veins of ice wedges and reconstruction of paleotemperature of ice formation. Problems of Cryolithology, 9, 179-183. (In Russian).

64. son Ahlmann H.W. and Droessler E.G. (1949a). Glacier Ice Crystal Measurements at Kebnekajse, Sweden. Journal of Glaciology, 1(5), 269- 274, DOI: 10.3189/002214349793702665.

65. son Ahlmann H.W. and Droessler E.G. (1949b). Glacier Ice Crystal Measurements at Kebnekajse, Sweden. Journal of Glaciology, 1(5), 269- 274, DOI: 10.3189/002214349793702665.

66. St-Jean M., Lauriol B., Clark I.D., Lacelle D. and Zdanowicz C. (2011). Investigation of ice-wedge infilling processes using stable oxygen and hydrogen isotopes, crystallography and occluded gases (O2, N2, Ar). Permafrost and Periglacial Processes, 22(1), 49-64, DOI: 10.1002/ppp.680.

67. Tikhonravova Y.V., Lupachev A.V., Slagoda E.A., Rogov V.V., Kuznetsova A.O., Butakov V.I., Simonova G.V., Taratunina N.A. and Mullanurov D.R. (2019). Structure and formation of ice-ground veins of the second lake-alluvial terrace in the North of Gydan in the late Neopleistocene– Holocene. Ice and Snow, 59(4), 557-570, DOI: 10.15356/2076-6734-2019-4-367 (In Russian with English summary).

68. Tikhonravova Y.V., Slagoda E.A., Rogov V.V., Butakov V.I., Lupachev A.V., Kuznetsova A.O. and Simonova G.V. (2020). Heterogeneous ices in ice wedges structure on the Pur-Taz interfluve peatlands (The North West Siberia, Russia). Ice and Snow, 60(2), 225-238, DOI: 10.31857/S2076673420020036. (In Russian with English summary).

69. Tikhonravova Y.V., Slagoda E.A., Rogov V.V., Galeeva E.I. and Kurchatov V.V. (2017). Texture and structure of the Late Holocene ground ice in the Northern West Siberia. Led I Sneg-Ice and Snow, 57(4), 553-564, DOI: 10.15356/2076-6734-2017-4-553-564. (In Russian with English summary).

70. Tikhonravova Ya.V. (2021). The problem of isotope-oxygen determination in heterogeneous ice wedges. Sixth Forum for Young Permafrost Scientists «Current Challenges and Future Prospects for Geocryology», June 28 –July 13, 2021, 66-68. (In Russian).

71. Tyshko K., Cherepanov N. and Fedotov V. (2000). Crystallian structure of sea ice cover. Gidrometeoizdat. (In Russian).

72. Vasil’chuk Y. (1991). Reconstruction of the paleoclimate of the Late Pleistocene and Holocene on the basis of isotope studies of subsurface ice and waters of the permafrost zone. Water Resources, 17(6), 640-647.

73. Vtyurin B. (1975). Ground ice of the USSR. Nauka. (In Russian).

74. Vtyurin B. and Vtyurina E. (1960). Winter observations on formation and behavior of thermal-contraction crack within ice wedge. In: Data of general geocryology, 98-105. AS USSR. (In Russian).

75. Wheeler J., Prior D., Jiang Z., Spiess R. and Trimby P. (2001). The petrological significance of misorientations between grains. Contributions to Mineralogy and Petrology, 141(1), 109-124, DOI: 10.1007/s004100000225.

76. Wilen L.A., Diprinzio C.L., Alley R.B. and Azuma N. (2003). Development, principles, and applications of automated ice fabric analyzers. Microscopy Research and Technique, 62(1), 2-18, DOI: 10.1002/jemt.10380.

For citation:

Tikhonravova Y.V., Rogov V.V., Slagoda E.A. Genetic Identification Of Ground Ice By Petrographic Method. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2021;14(4):20-32.

Views: 65

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)