Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

TUNDRA IN A CHANGING CLIMATE

https://doi.org/10.24057/2071-9388-2011-4-3-4-18

Abstract

Both palaeogeographical reconstructions and general circulation models indicate that global warming is especially strongly manifested in high latitudes. Under a 2°C increase in mean global temperature, almost the entire modern tundra zone would become potentially suitable for tree growth. Nevertheless, palaeobotanic data cannot be applied directly to estimating vegetation response to the global warming expected in the 21st century, as they characterize a quasi-equilibrium state of ecosystems, which takes several centuries to be achieved. Low migration rates of trees, damage caused by fires and insects, processes of soil drying or paludification, and influence of herbivorous animals and human activities may slow down considerably forest spread in tundra. Climate warming will probably cause a decline in the populations of Arctic species and expansion of ranges of some southern animal species into the Arctic.

About the Authors

Terry Callaghan

Sweden
Sheffield Centre for Arctic Ecology, Univ. Sheffield, UK; Abisko Research Station, Sweden


Andrei Velichko

Russian Federation
Institute of Geography RAS, Moscow


Olga Borisova

Russian Federation
Institute of Geography RAS, Moscow


References

1. Aanes, R., B.-E. Saether, N.A. Oritsland (2000) Fluctuations of an introduced population of

2. Svalbard reindeer: the effects of density dependence and climatic variation // Ecography.

3. V. 23. P. 437–443.

4. Anisimov, O.A., Velichko A.A., Demchenko P.F. et al. (2002) Effect of climate change on

5. permafrost in the past, present, and future // Izv. Atmos. Ocean. Phys., V. 38, pp. 25–39.

6. Atlas of paleoclimates and paleoenvironments of Northern hemisphere. Late Pleistocene –

7. Holocene (1992) B. Frenzel, M. Pesci, A.A. Velichko (eds). Geogr. Res. Inst. HAS and Gustav

8. Fischer Verlag, Budapest – Stuttgart,. 146 p. + maps.

9. Batzli, G.O., R.G. White, S.F. MacLean, Jr., et al. (1980) The herbivore-based trophic system //

10. An Arctic ecosystem: The coastal tundra at Barrow, Alaska. Stroudsburg: Dowden, Hutchinson

11. and Ross. P. 81–95.

12. Bigelow, N.H., L.B. Brubaker, M.E. Edwards et al. (2003) Climate change and Arctic ecosystems:

13. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene,

14. and present // J. of Geophys. Res. V. 108. № D19: 8170. doi:10.1029/2002JD002558.

15. Bliss, L.C., N.V. Matveyeva (1992) Circumpolar Arctic vegetation // Arctic and Alpine biodiversity

16. patterns, causes and ecosystem consequences. Heidelberg: Springer. P. 59–89.

17. Cairns, D.M., J. Moen (2004) Herbivory influences tree lines // J. of Ecology V. 92. P. 1019–1024.

18. Callaghan, T.V., L.O. Bjorn, F.S. Chapin III et al. (2005) Arctic tundra and polar desert

19. ecosystems // Arctic Climate Impact Assessment (ACIA): Scientific report. Cambridge:

20. Cambridge Univ. Press. P. 243–352.

21. CAPE Project Members. (2001) Holocene paleoclimate data from the Arctic: Testing models

22. of global climate change // Quat. Sci. Rev. V. 20. P. 1275–1287.

23. Chapin, F.S., A.D. McGuire, J. Randerson et al. (2000) Arctic and boreal ecosystems of

24. western North America as components of the climate system // Global Change Biol.

25. V. 6. P. 1–13.

26. Chapin, F.S., M. Sturm, M.C. Serreze et al. (2005) Role of land-surface changes in Arctic summer

27. warming // Science. V. 310. P. 657–660.

28. Christensen, T.R., T. Johansson, N. Malmer et al. (2004) Thawing sub-arctic permafrost: Effects

29. on vegetation and methane emissions // Geophys. Res. Lett. 31. 04501.

30. Cicerone, R.J., R.S. Oremland (1988) Biogeochemical aspects of atmospheric methane //

31. Glob. Biogeochem. Cycles. V. 2. P. 299–327.

32. Climate Change. The Physical Science Basis. (2007) Contribution of Working Group I to the

33. Fourth Assessment Report of IPCC. Cambridge: Cambridge Univ. Press. 996 pp.

34. Conservation of Arctic Flora and Fauna (CAFF). (2001) Arctic flora and fauna: status and

35. conservation. Helsinki: Edita. 272 p.

36. Cornelissen, J.H.C., T.V.Callaghan, J.M. Alatalo et al. (2001) Global change and Arctic ecosystems:

37. is lichen decline a function of increases in vascular plant biomass? // J. Ecology.

38. V. 89. P. 984–994.

39. Crawford, R.M.M., C.E. Jeffree, W.G. Rees (2003) Paludification and forest retreat in northern

40. oceanic environments // Ann. Botany. V. 91. P. 213–226.

41. Davis, M.B. (1989) Lags in vegetation response to greenhouse warming // Climatic

42. Change. V. 15. P. 75–82.

43. Dormann C.F., S.J. Woodin (2002) Climate change in the Arctic: Using plant functional

44. types in a meta-analysis of field experiments // Functional Ecology. V. 16. № 1. P. 4–17.

45. FAUNMAP Working Group. (1996) Spatial response of mammals to late Quaternary environmental

46. fluctuations // Science. V. 272. P. 1601–1606.

47. Fischlin, A., G.F. Midgley, J.T. Price et al. (2007) Ecosystems, their properties, goods, and services //

48. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group

49. II to the Fourth Assessment Report of IPCC. Cambridge: Cambridge Univ. Press. P. 211–272.

50. Grichuk, V.P. Vegetation in the Late Pleistocene. In: A.A. Velichko (Ed.) Dynamics of landscape

51. components and inner marine basins of Northern Eurasia over the last 130,000

52. years. GEOS, Moscow , pp. 64–89 (in Russian).

53. Hinzman, L.D., N.D. Bettez, W.R. Bolton et al. (2005) Evidence and implication of recent climate

54. change in northern Alaska and other Arctic regions // Climatic Change. V. 72. P. 251–298.

55. Høgda, K.A., S.R. Karlsen, I. Solheim (2001) Climate change impact on growing season

56. in Fennoscandia studied by a time series of NOAA AVHRR NDVI data // Geoscience and

57. Remote Sensing Symposium, 2001. IGARSS ‘01, IEEE 2001.

58. Huntley, В., H.J.B. Birks (1983. An atlas of past and present pollen maps for Europe;

59. –13 000 years ago. Cambridge: Cambridge Univ. Press.

60. Juday, G.P., V. Barber, P. Duffy et al. (2005) Forests, land management, and agriculture. Chapter

61. // Arctic climate impact assessment. New York: Cambridge Univ. Press. P. 781–862.

62. Kaplan, J.O., N.H. Bigelow, I.C. Prentice et al. (2003) Climate change and Arctic ecosystems:

63. Modeling, paleodata-model comparisons, and future projections // J. Geophys. Res.

64. V. 108. № D19: 8171. doi: 10.1029/2002JD002559.

65. Khotinsky, N.A., V.A. Klimanov (2002) Holocene vegetation. In: A.A. Velichko (Ed.) Dynamics

66. of landscape components and inner marine basins of Northern Eurasia over the last

67. 000 years. GEOS, Moscow, pp. 89–105 (in Russian).

68. Körner, C.H. (1995) Alpine plant diversity: A global survey and functional interpretations //

69. Arctic and Alpine biodiversity patterns, causes and ecosystem consequences. Heidelberg:

70. Springer. P. 45–62.

71. Lloyd, A.H. (2005) Ecological histories from Alaskan tree lines provide insight into future

72. change // Ecology. V. 86. P. 1687–1695.

73. MacDonald, G.M., A.A. Velichko, C.V. Kremenetski et al. (2000) Holocene treeline history

74. and climate change across Northern Eurasia // Quat. Res. V. 53. P. 302–311.

75. Matveyeva, N., Y. Chernov (2000) Biodiversity of terrestrial ecosystems // The Arctic environment,

76. people, policy. Amsterdam: Harwood Acad. Publ. P. 233–274.

77. McGuire, A.D., F.S. Chapin III, C. Wirth et al. (2007) Responses of high latitude ecosystems

78. to global change: Potential consequences for the climate system // Terrestrial ecosystems

79. in a changing world. Berlin: Springer. P. 297–310.

80. Myneni, R.B., C.D. Keeling, C.J. Tucker et al. (1997) Increased plant growth in the northern

81. high latitudes from 1981–1991 // Nature. V. 386. P. 698–702.

82. Nemani, R.R., C.D. Keeling, H. Hashimoto et al. (2003) Climate-driven increases in global

83. terrestrial net primary production from 1982 to 1999 // Science. V. 300. P. 1560–1563.

84. Nikolskaya, M.V., M.N. Cherkasova (1982) The dynamics of Holocene floras of Taimyr

85. (based on paleophyitological and geochronological data). In: A.A. Velichko, I.I. Spasskaya,

86. N.A.Khotinsky (Eds.) The development of the nature of the Soviet Union in the late Pleistocene

87. and Holocene. Nauka, Moscow, pp. 192–201 (in Russian).

88. Nordengren, C., A. Hofgaard, J.P. Ball (2003) Availability and quality of herbivore winter browse

89. in relation to tree height and snow depth // Annales Zoologici Fennici. V. 40. № 3. P. 305–314.

90. Oechel, W.C., S.J. Hastings, G. Vourlitis et al. (1993) Recent change of arctic tundra ecosystems

91. from a net carbon sink to a source // Nature. V. 361. P. 520–523.

92. Prentice, I.C., J. Guiot, B. Huntley et al. (1996) Reconstructing biomes from palaeoecological

93. data: A general method and its application to European pollen data at 0 and 6 ka //

94. Climate Dynamics. V. 12. P. 185–194.

95. Richard, P.J.H. (1995) Le couvert végétal du Québec-Labrador il y a 6000 ans BP // Essai

96. Geogr. Phys. Quat. V.49. P. 117–140.

97. Sitch, S., A.D. McGuire, J. Kimball et al. (2007) Assessing the carbon balance of circumpolar

98. Arctic tundra with remote sensing and process-based modeling approaches // Ecological

99. Appl. V. 17. P. 213–234.

100. Smith, L.C., Y. Sheng, G.M. MacDonald, L.D. Hinzman (2005) Disappearing Arctic lakes //

101. Science. V. 308. P. 1429.

102. Strathdee, A.T., J.S. Bale (1998) Life on the edge: Insect ecology in Arctic environments //

103. Ann. Rev. Entomol. V. 43. P. 85–106.

104. Sturm, M., C. Racine, K. Tape (2001) Climate change: increasing shrub abundance in the

105. Arctic // Nature. V. 411. P. 546–547.

106. Udra, I.F. (1988) Expansion of plants issues and plant paleobiology. Naukova Dumka, Kiev,

107. p. (in Russian).

108. Usher, M.B., T.V. Callaghan, G. Gilchrist et al. (2005) Principles of conserving the Arctic’s

109. biodiversity // Arctic Climate Impact Assessment (ACIA): Scientific report. Cambridge:

110. Cambridge Univ. Press. P. 539–596.

111. Velichko, A.A., O.K. Borisova, E.M. Zelikson (2002) Paradoxes of climate of the last interglacial

112. period // Paths of Evolutionary Geography (results and prospects). Institute of Geography

113. of the Russian Academy of Sciences, Moscow, pp. 207–239 (in Russian).

114. Velichko, A.A., O.K. Borisova, E.M. Zelikson (1991) Vegetation in a changing climate // Bulletin

115. of the Academy of Sciences of the USSR, № 3, pp. 82–94 (in Russian).

116. Velichko, A.A., O.K. Borisova, E.M. Zelikson, T.D. Morozova (2004) Changes in vegetation

117. and soils of the East European Plain to be expected in the 21st century due to the

118. anthropogenic change in climate // Geographia Polonica. V. 77. № 2. P. 35–45.

119. Vlassova, T.K. (2002) Human impacts on the tundra-taiga zone dynamics: The case of the

120. Russian lesotundra // Ambio Spec. Rep. V. 12. P. 30–36.

121. Walker, M.D., C.H. Wahren, R.D. Hollister et al. (2006) Plant community responses to experimental

122. warming across the tundra biome // P. Natl. Acad. Sci. USA. V. 103. P. 1342–1346.

123. Zavarzin, G.A., V.N. Kudeyarov (2006) Soil as a major source of carbon dioxide and organic

124. carbon reservoir in Russia // Bulletin of the Academy of Sciences of the Russian Academy

125. of Sciences, V. 76, № 1, pp. 14–29 (in Russian).


Review

For citations:


Callaghan T., Velichko A., Borisova O. TUNDRA IN A CHANGING CLIMATE. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2011;4(3):4-18. https://doi.org/10.24057/2071-9388-2011-4-3-4-18

Views: 828


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)