Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

RISK ASSESSMENT OF ENCOUNTERING KILLER WAVES IN THE BLACK SEA

https://doi.org/10.24057/2071-9388-2012-5-1-84-111

Full Text:

Abstract

The problem of assessing the risk for a vessel to encounter a killer wave in the Black Sea is considered. Analysis of in situ wave data obtained from the platform of Marine Hydrophysical Institute in the autumn of 2009 shows that occurrence frequency of abnormally high waves (freak, rogue, or killer waves) varies considerably on the time scale of several hours. It is shown that the formation of such waves is associated with nonlinear processes in the wave field, presumably, with the development of modulational instability. Ninety percent of the total number of killer waves was observed in the swell wave system, and 70% of them propagated approximately in wind direction. We propose a scenario of the killer waves formation in the Black Sea. The scenario was confirmed by numerical reconstruction of the wind and wave fields in the Black Sea for the history of storms on Oct. 14, 2009 in Katsiveli and on Feb. 01, 2003 in Gelendzhik, using the MM5 mesoscale atmospheric model and the WAM-C4 wave model. A practical approach to assessing the risk for a vessel to encounter a killer wave in the Black Sea is presented.

About the Authors

Vitaliy Ivanov

Ukraine
Marine Hydrophysical Institute, Sevastopol, Ukraine


Sergey Dotsenko

Ukraine
Marine Hydrophysical Institute, Sevastopol, Ukraine


Mikhail Shokurov

Ukraine
Marine Hydrophysical Institute, Sevastopol, Ukraine


Vladimir Malinovsky

Ukraine
Marine Hydrophysical Institute, Sevastopol, Ukraine


Vladimir Dulov

Ukraine
Marine Hydrophysical Institute, Sevastopol, Ukraine


Sergey Kuznetsov

Russian Federation
Institute of Oceanology of P.P. Shirshov, Moscow, Russian Federation


Yana Saprykina

Russian Federation
Institute of Oceanology of P.P. Shirshov, Moscow, Russian Federation


Vladislav Polnikov

Russian Federation
A.M. Obukhov Institute of Atmospheric Physics, Moscow, Russian Federation


References

1. Annenkov S.Y., Shrira V. I. (2009) ‘‘Fast’’ Nonlinear Evolution in Wave Turbulence // Physical

2. Review Letters Vol. 102. doi: 10.1103/PhysRevLett.102.024502, pp. 024502-1–024502-4.

3. Badulin S.I., Korotkevich A.O., Resio D., Zakharov V.E. (2009) Wave-wave interactions in

4. wind-driven mixed seas // Proceedings of the Rogue Waves 2008 Workshop (October

5. –15, 2008, Brest, France), pp. 77–86.

6. Chalikov D. (2007) Numerical simulation of the Benjamin-Feir instability and its consequences

7. // Physics of Fluids 19, 016602, 15 p.

8. Divinskiy B.V., Kosyan R.D., Podymov I.S., Pushkarev O.V. (2003) Extreme wave in a northeast

9. part of Black sea in February 2003 // Oceanology, Vol. 43, No 6, pp. 1–3 (in Russian).

10. Donelan M.A., Magnusson A.K. (2005) The role of meteorological focusing in generating

11. rogue wave conditions / In: Proc. 14th Aha Huliko‘a Winter Workshop, Honolulu, Hawaii. pp.

12. –145.

13. Dotsenko S.F., Ivanov V.A. (2006) Freak waves / Series “Modern problems of Oceanology»,

14. issue 1. MHI NAS of Ukraine, Sevastopol, 44 p. (in Russian).

15. Dotsenko S.F., Ivanov V.A., Poberezhny Yu.A. (2009) Freak waves in north-western part of

16. the Black Sea // Dopovidi NAS of Ukraine, No 9, pp. 113–117 (in Russian).

17. Dotsenko S.F., Ivanov V.A., Poberezhny Yu.A. (2010) Link of freak waves formation and meteorological

18. conditions in north-western part of the Black Sea // Dopovidi NAS of Ukraine

19. No 12, pp. 105–109 (in Russian).

20. Dudhia J. (1993) A nonhydrostatic version of the Penn State/NCAR mesoscale model:

21. Validation tests and simulation of an Atlantic cyclone and cold front // Mon. Wea. Rev. Vol.

22. , pp. 1493–1513.

23. Gramstad O., Trulsen K. (2010) Can swell increase the number of freak waves in a wind sea? //

24. J. Fluid Mech. Vol. 650, pp 57–79.

25. Guedes Soares C., Cherneva Z., Antao E. M. (2004) Abnormal waves during Hurricane Camille //

26. Journal of Geophysical Research. Vol. 109, C08008. doi:10.1029/2003JC002244, 7 p.

27. Hanson J.I., Phillips O.M. (1999) Wind Sea Growth and Dissipation in the Open Ocean //

28. Journal of Physical Oceanography. Vol. 29. pp. 1633–1647.

29. Janssen P.A.E.M. (2003), Nonlinear four-wave interactions and freak waves // J. Phys.

30. Oceanogr. Vol. 33, pp. 863–884.

31. Kartashova E., Shugan I.V. (2011) Dynamical cascade generation as a basic mechanism of

32. Benjamin-Feir instability // EPL (Europhysics Letters) Vol. 95, No 3, 30003, doi:10.1209/0295-

33. /95/30003, 6 p.

34. Kharif C., Pelinovsky E., Slunyaev A. (2009) Rogue waves in the ocean. Springer-Verlag,

35. Berlin, Heidelberg, 216 p.

36. Komen G., Cavaleri L., Donelan M., Hasselmann K., Hasselmann S., Janssen P.A.E.M. (1994)

37. Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 p.

38. Kurkin A.A., Pelinovsky E.N. (2004) Freak waves: facts, theory and modelling. NNSTU, Nizhny

39. Novgorod, 158 p. (In Russian).

40. Kuznetsov S.Yu., Ya.V. Saprykina, R.D. Kos’yan, O.V. Pushkarev (2006) Formation Mechanism

41. of Extreme Storm Waves in the Black Sea // Doklady Earth Sciences, Vol. 408, No 4,

42. pp. 570–574.

43. Kuznetsov S., Saprykina Y. (2009) Fine structure and peculiarities of wave spectra with

44. Benjamin – Feir instability // Proceedings of the Rogue Waves 2008 Workshop, October

45. –15, 2008, Brest, France. pp. 99–108.

46. Kuznetsov S.Yu., Dulov V.A., Saprykina Ya.V., Dotsenko S.F., Malinovsky V.V., Polnikov

47. V.G., Shokurov M.V. (2011) Extremely dangerous storm conditions in the Black Sea /

48. Series “Modern problems of Oceanology”, issue 9. MHI NAS of Ukraine, Sevastopol. 66 p.

49. (in Russian).

50. Liu P.C., Pinho U.F. (2004) Freak waves – more frequent than rare! // Annales Geophysicae

51. Vol. 22. pp. 1839–1842.

52. Mori N., Janssen, P. A. E. M. (2006) On kurtosis and occurrence probability of freak waves //

53. J. Phys. Oceanogr. Vol. 36, pp. 1471–1483.

54. Onorato, M., Osborne, A.R., Serio, M., Damiani, T. (2001) Occurrence of freak waves from

55. envelope equations in random ocean wave simulations. / Proceedings of the workshop

56. “Rogue Waves 2000”. IFREMER, Brest. pp. 181–191.

57. Onorato M., Cavaleri L., Fouques S., Gramstad O., Janssen P.A.E. M., Monbaliu J., Osborne

58. A.R., Pakozdi C., Serio M., Stansberg C.T., Toffoli A., Trulsen K. (2009) Statistical properties

59. of mechanically generated surface gravity waves: a laboratory experiment in a threedimensional

60. wave basin // J. Fluid Mech. Vol. 627, pp. 235–257.

61. Osborne A.R., Onorato M., Serio M. (2005) Nonlinear Fourier analysis of deep-water, random

62. surface waves: theoretical formulation and experimental observations of rogue

63. waves / In: Proc. 14th Aha Huliko‘a Winter Workshop, Honolulu, Hawaii, pp. 65–77.

64. Phillips O.M. (1985) Spectral and statistical properties of the equilibrium range in windgenerated

65. gravity waves // Journal of Fluid Mechanics. Vol. 156. pp. 505–531.

66. Saprykina Ya.V., Dulov V.A., Kuznetsov S.Yu., Smolov V.E. (2010) Freak waves in the Black Sea:

67. mechanisms and conditions of occurrence // Ecological safety of coastal and shelf zones

68. and comprehensive use of shelf resources. Vol. 21. MHI NAS of Ukraine, Sevastopol pp.

69. –102 (In Russian).

70. Socquet-Juglard H., Dysthe K., Trulsen H. E., Krogstad J. Liu (2005) Distribution of surface

71. gravity waves during spectral changes // J. Fluid Mech., Vol. 542, pp. 195–216.

72. Shin S., Hong K. (2009) Nonlinear Parameters of Wave Distribution to Characterize Freak

73. Waves // Proceedings of the Rogue Waves 2008 Workshop (October 13–15, 2008, Brest,

74. France) pp. 157–158.

75. Tamura H., Waseda T., Miyazawa Y. (2009) Freakish sea state and swell-windsea coupling:

76. Numerical study of the Suwa-Maru incident // Geophysical Research Letters, Vol. 36,

77. L01607, doi:10.1029/2008GL036280. 5 p.

78. The WAMDI group (1998) The WAM model. – The third generation ocean wave prediction

79. model. // J. Phys. Oceanography., Vol. 18, pp. 1775–1810.

80. Yefimov V.V., Komarovskaya O.I., Shokurov M.V. (1998) Numerical model for wind waves in

81. the Black Sea. / Preprint MHI NAS of Ukraine, 40 p. (in Russian).

82. Young I.R. (1994) On the measurement of directional wave spectra // Applied Ocean

83. Research. Vol. 16, pp. 283–294.

84. Young I.R. (2006) Directional spectra of hurricane wind waves // Journal Geophysics

85. Research. Vol. 111, C08020, doi:10.1029/2006JC003540, 14 p.

86. Zakharov V.E., Dyachenko A.I., Prokofiev A.O. (2008) Freak Waves: Peculiarities of Numerical

87. Simulations / In “Extreme Ocean Waves”, Eds. E. Pelinovsky, C. Kharif, Springer. pp. 1–30.


For citation:


Ivanov V., Dotsenko S., Shokurov M., Malinovsky V., Dulov V., Kuznetsov S., Saprykina Y., Polnikov V. RISK ASSESSMENT OF ENCOUNTERING KILLER WAVES IN THE BLACK SEA. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2012;5(1):84-111. https://doi.org/10.24057/2071-9388-2012-5-1-84-111

Views: 158


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)