Advanced search

Radon Hazard In Permafrost Conditions: Current State Of Research

Full Text:


In this paper, we review both practical and theoretical assessments for evaluating radon geohazards from permafrost landforms in northern environments (>60º N). Here, we show that polar amplification (i.e. climate change) leads to the development of thawing permafrost, ground subsidence, and thawed conduits (i.e. Taliks), which allow radon migration from the subsurface to near surface environment. Based on these survey results, we conjecture that abruptly thawing permafrost soils will allow radon migration to the near surface, and likely impacting human settlements located here. We analyze potential geohazards associated with elevated ground concentrations of natural radionuclides. From these results, we apply the main existing legislation governing the control of radon parameters in the design, construction and use of buildings, as well as existing technologies for assessing the radon hazard. We found that at present, these laws do not consider our findings, namely, that increasing supply of radon to the surface during thawing of permafrost will enhance radon exposure, thereby, changing prior assumptions from which the initial legislation was determined. Hence, the legislation will likely need to respond and reconsider risk assessments of public health in relation to radon exposure. We discuss the prospects for developing radon geohazard monitoring, methodical approaches, and share recommendations based on the current state of research in permafrost effected environments. 

About the Authors

Andrey V. Puchkov
N. Laverov Federal Centre for Integrated Arctic Research of the Ural Branch of Russian Academy of Sciences
Russian Federation

109 Severnoj Dviny Emb., Arkhangelsk, 163000

Evgeny Yu. Yakovlev
N. Laverov Federal Centre for Integrated Arctic Research of the Ural Branch of Russian Academy of Sciences
Russian Federation

109 Severnoj Dviny Emb., Arkhangelsk, 163000

Nicholas Hasson
Water and Environmental Research Center, University of Alaska Fairbanks
United States

1731 South Chandalar Drive, Fairbanks, AK 99775

Guilherme A. N. Sobrinho
Institute of Radiation Protection and Dosimetry

Av. Salvador Allende s/n – Barra da Tijuca, Rio de Janeiro, Brasil, CEP – 22783-127

Yuliana V. Tsykareva
Northern (Arctic) Federal University named after M.V. Lomonosov
Russian Federation

17 Severnaya Dvina Emb., Arkhangelsk, 163002

Alexey S. Tyshov
N. Laverov Federal Centre for Integrated Arctic Research of the Ural Branch of Russian Academy of Sciences
Russian Federation

109 Severnoj Dviny Emb., Arkhangelsk, 163000

Pavel I. Lapikov
N. Laverov Federal Centre for Integrated Arctic Research of the Ural Branch of Russian Academy of Sciences
Russian Federation

109 Severnoj Dviny Emb., Arkhangelsk, 163000

Ekaterina V. Ushakova
Yuri Gagarin State Technical University of Saratov
Russian Federation

77 Politechnicheskaya street, Saratov, 410054


1. Adopted I.P.C.C. (2014). Climate Change 2014 Synthesis Report. IPCC: Geneva, Szwitzerland.

2. Al-Ahmady K.K., & Hintenlang D.E. (1994). Assessment of temperature-driven pressure differences with regard to radon entry and indoor radon concentration. AARST. Atlantic City: The American Association of Radon Scientists and Technologists.

3. Arvela H. (1995). Seasonal variation in radon concentration of 3000 dwellings with model comparisons. Radiation Protection Dosimetry, 59(1), 33-42, DOI: 10.1093/oxfordjournals.rpd.a082634.

4. Astakhov N.E., Bartanova S.V., Tubanov C.A. (2015). Radon anomalies of some break zones in buryatia as the factor of radiation risk. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 17, 5-1 (in Russian with English summary).

5. Bakaeva N., Kalaydo A. (2016). About the radon transport mechanisms into the buildings. Construction and reconstruction, (5), 51-59, (in Russian with English summary).

6. Banerjee K.S., Basu A., Guin R., & Sengupta D. (2011). Radon (222Rn) level variations on a regional scale from the Singhbhum Shear Zone, India: A comparative evaluation between influence of basement U-activity and porosity. Radiation Physics and Chemistry, 80(5), 614-619, DOI: 10.1016/j.radphyschem.2010.12.015.

7. Baskaran M. (2016). Radon: A tracer for geological, geophysical and geochemical studies (Vol. 367). Basel: Springer, DOI: 10.1007/978-3-319-21329-3.

8. Berezina E.V., & Elansky N.F. (2009). 222 Rn concentrations in the atmospheric surface layer over continental Russia from observations in TROICA experiments. Izvestiya, Atmospheric and Oceanic Physics, 45(6), 757-769 (in Russian with English summary), DOI: 10.1134/S0001433809060097.

9. Berezina E.V., Elansky N.F., Moiseenko K.B., Safronov A.N., Skorokhod A.I., Lavrova O.V., ... & Shumsky R.A. (2014). Estimation of biogenic CH4 and CO2 emissions and dry deposition of O3 using 222 Rn measurements in TROICA expeditions. Izvestiya, Atmospheric and Oceanic Physics, 50(6), 583-594 (in Russian with English summary), DOI: 10.1134/S000143381406005X.

10. Biskaborn B.K., Smith S.L., Noetzli J., Matthes H., Vieira G., Streletskiy D. A., ... & Lantui H. (2019). Permafrost is warming at a global scale. Nature communications, 10(1), 1-11, DOI: 10.1038/s41467-018-08240-4.

11. Blonsky A.V., Mitrushkin D.A., & Savenkov E.B. (2017). Simulation of flows in a discrete crack system: computational algorithms. Preprints of the Institute of applied mathematics. M. V. Keldysh RAS, (0), 66-30, (in Russian with English summary), DOI: 10.20948/prepr-2017-66.

12. Bridge N.J., Banerjee N.R., Finnigan C.S., Carpenter R., & Ward J. (2009, December). The Lac Cinquante Uranium Deposit, Nunavut, Canada. In AGU Fall Meeting Abstracts, 2009, V33D-2065.

13. Brown J., Ferrians Jr.O.J., Heginbottom J.A., & Melnikov E.S. (1997). Circum-Arctic map of permafrost and ground-ice conditions, Reston, VA: US Geological Survey, 45, DOI: 10.3133/CP45.

14. Buldovicz S.N., Khilimonyuk V.Z., Bychkov A.Y., Ospennikov E.N., Vorobyev S.A., Gunar A.Y., ... & Amanzhurov R.M. (2018). Cryovolcanism on the earth: Origin of a spectacular crater in the Yamal Peninsula (Russia). Scientific reports, 8(1), 1-6.

15. Chen J. (2009). A preliminary design of a radon potential map for Canada: a multi-tier approach. Environmental Earth Sciences, 59(4), 775-782, DOI: 10.1007/s12665-009-0073-x.

16. Chi G., Haid T., Quirt D., Fayek M., Blamey N., & Chu H. (2017). Petrography, fluid inclusion analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada. Mineralium Deposita, 52(2), 211-232, DOI: 10.1007/s00126-016-0657-9.

17. Chuvilin E.M., Grebenkin S.I., & Zhmaev M.V. (2018). Influence of hydrate and ice formation on the gas permeability of sandy rocks. Vesti gas science, 3(35), (in Russian with English summary).

18. Ciotoli G., Voltaggio M., Tuccimei P., Soligo M., Pasculli A., Beaubien S.E., & Bigi S. (2017). Geographically weighted regression and geostatistical techniques to construct the geogenic radon potential map of the Lazio region: A methodological proposal for the European Atlas of Natural Radiation. Journal of environmental radioactivity, 166, 355-375, 10.1016/j.jenvrad.2016.05.010.

19. Clulow F.V., Davé N.K., Lim T.P., & Avadhanula R. (1998). Radionuclides (lead-210, polonium-210, thorium-230, and-232) and thorium and uranium in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada. Environmental Pollution, 99(2), 199-213., DOI: 10.1016/S0269-7491(97)00187-5.

20. Coletti C., Brattich E., Cinelli G., Cultrone G., Maritan L., Mazzoli C., ... & Sassi R. (2020). Radionuclide concentration and radon exhalation in new mix design of bricks produced reusing NORM by-products: The influence of mineralogy and texture. Construction and Building Materials, 260, 119820, DOI: 10.1016/j.conbuildmat.2020.119820.

21. Council Directive 2013/59/Euratom (05.12.2013)

22. Daraktchieva Z., Wasikiewicz J.M., Howarth C.B., & Miller C.A. (2021). Study of baseline radon levels in the context of a shale gas development. Science of The Total Environment, 753, 141952, DOI: 10.1016/j.scitotenv.2020.141952.

23. Doloisio N., & Vanderlinden J.P. (2020). The perception of permafrost thaw in the Sakha Republic (Russia): Narratives, culture and risk in the face of climate change. Polar Science, 26, 100589, DOI: 10.1016/j.polar.2020.100589.

24. Domingos F., & Pereira A. (2018). Implications of alteration processes on radon emanation, radon production rate and W-Sn exploration in the Panasqueira ore district. Science of The Total Environment, 622, 825-840, DOI: 10.1016/j.scitotenv.2017.12.028.

25. Dushin V.A., Kuznetsov V.I., & Grigoriev V.V. (1997). Assessment of the prospects and conditions for the localization of new and unconventional types of mineral raw materials in the north of the Urals. In Polar Ural-new mineral resource base of Russia (proceedings of the 1st Polar-Ural scientific and practical conference). Tyumen-Salekhard, 26. (in Russian).

26. Eakin M., Brownlee S.J., Baskaran M., & Barbero L. (2016). Mechanisms of radon loss from zircon: microstructural controls on emanation and diffusion. Geochimica et Cosmochimica Acta, 184, 212-226, DOI: 10.1016/j.gca.2016.04.024.

27. (2016). NPP «EXORB» LLC. [online] Available at: [Accessed 20 Mar. 2021].

28. Evangelista H., & Pereira E. B. (2002). Radon flux at king George island, Antarctic peninsula. Journal of environmental radioactivity, 61(3), 283-304, DOI: 10.1016/S0265-931X(01)00137-0.

29. Federal Law as of 09.01.1996 No. 3-FZ «About Radiation Safety of the Public», Russia.

30. Federal Law as of 30.12.2009 No. 384-FZ «Technical Regulations for Safety of Buildings and Structures», Russia.

31. Feng S., Wang H., Cui Y., Ye Y., Liu Y., Li X., ... & Yang R. (2020). Fractal discrete fracture network model for the analysis of radon migration in fractured media. Computers and Geotechnics, 128, 103810, DOI: 10.1016/j.compgeo.2020.103810.

32. Giustini F., Ciotoli G., Rinaldini A., Ruggiero L., & Voltaggio M. (2019). Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy. Science of the Total Environment, 661, 449-464, DOI: 10.1016/j.scitotenv.2019.01.146.

33. Glover P.W.J. (2006). Increased domestic radon exposure caused by permafrost thawing due to global climate change, EGU General Assembly, Vienna, Austria, 2-7 April. EGU06-A-01439.

34. Glover P.W., & Blouin M. (2007). Modelling increased soil radon emanation caused by instantaneous and gradual permafrost thawing due to global climate warming.

35. Hassan N.M., Hosoda M., Ishikawa T., Sorimachi A., Sahoo S.K., Tokonami S., & Fukushi M. (2009). Radon migration process and its influence factors; review. Japanese Journal of Health Physics, 44(2), 218-231, DOI: 10.5453/jhps.44.218.

36. Heslop J.K., Winkel M., Walter Anthony K.M., Spencer R.G.M., Podgorski D.C., Zito P., ... & Liebner S. (2019). Increasing organic carbon biolability with depth in yedoma permafrost: ramifications for future climate change. Journal of Geophysical Research: Biogeosciences, 124(7), 2021-2038, DOI: 10.1029/2018JG004712.

37. Hoekstra P. (1978). Electromagnetic methods for mapping shallow permafrost. Geophysics, 43(4), 681-874, DOI: 10.1190/1.1440853.

38. IAEA (2013). Measurement and Calculation of Radon Releases from NORM Residues. Technical Reports Series, 474. IAEA, Austria.

39. Ji M., Kong W., Liang C., Zhou T., Jia H., & Dong X. (2020). Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 14(11), 3907-3916, DOI: 10.5194/tc-14-3907-2020.

40. Kawabata K., Sato T., Takahashi H. A., Tsunomori F., Hosono T., Takahashi M., & Kitamura Y. (2020). Changes in groundwater radon concentrations caused by the 2016 Kumamoto earthquake. Journal of Hydrology, 584, 124712, DOI: 10.1016/j.jhydrol.2020.124712.

41. Klimshin A.V., Kozlova I.A., Rybakov E.N., Lukovskoy M.Yu. (2010). Effect of freezing the surface layer of soil on the radon transport. Vestnik Kamchatskoy regional’noy assotsiatsii «Uchebno-nauchnyy tsentr». Seriya: Nauki o Zemle, 16(2), 146-151 (in Russian with English summary).

42. Koptev D.P. (2020). Norilsk spill: lessons and consequences. Drilling and Oil, (7-8), 3-9. (in Russian with English summary).

43. Kropat G., Bochud F., Murith C., Palacios M., & Baechler S. (2017). Modeling of geogenic radon in Switzerland based on ordered logistic regression. Journal of environmental radioactivity, 166, 376-381, DOI: 10.1016/j.jenvrad.2016.06.007.

44. Krupp K., Baskaran M., & Brownlee S.J. (2017). Radon emanation coefficients of several minerals: How they vary with physical and mineralogical properties. American Mineralogist: Journal of Earth and Planetary Materials, 102(7), 1375-1383, DOI: 10.2138/am-2017-6017.

45. Kuo T., & Tsunomori F. (2014). Estimation of fracture porosity using radon as a tracer. Journal of Petroleum Science and Engineering, 122, 700-704, DOI: 10.1016/j.petrol.2014.09.012.

46. Leonard L.J., Mazzotti S., Cassidy J.C., Rogers G., & Halchuk S. (2010). Seismic hazard in western canada from global positioning system strain rate data. Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering Compte Rendu de la 9ième Conférence Nationale Américaine et 10ième Conférence Canadienne de Génie Parasismique July 25-29, 753, 1-10.

47. Li Y., Tan W., Tan K., Liu Z., Fang Q., Lv J., ... & Guo Y. (2018). The effect of laterite density on radon diffusion behavior. Applied Radiation and Isotopes, 132, 164-169, DOI: 10.1016/j.apradiso.2017.12.001.

48. Liu L., Zhao D., Wei J., Zhuang Q., Gao X., Zhu Y., ... & Zheng D. (2021). Permafrost sensitivity to global warming of 1.5° C and 2° C in the Northern Hemisphere. Environmental Research Letters, 16(3), 034038, DOI: 10.1088/1748-9326/abd6a8.

49. Livshits M., Gulabyants L. (2017). The mathematical solution of the boundary problem of radon transfer in the system «soil – atmosphere – building». Fundamental, exploratory and applied research of the russian academy of natural sciences on scientific support for the development of architecture, urban planning and the construction industry of the russian federation in 2016, 218-226. (in Russian with English summary).

50. Loisy C., & Cerepi A. (2012). Radon-222 as a tracer of water–air dynamics in the unsaturated zone of a geological carbonate formation: Example of an underground quarry (Oligocene Aquitain limestone, France). Chemical Geology, 296, 39-49, DOI: 10.1016/j.chemgeo.2011.12.010.

51. Marenniy A.M., & Kiselev S.M. (2019). National radon programs: implementation experience and challenges for the future. Radiation Hygiene , 12 (2 (sv)), 97-108, DOI: 10.21514/1998-426Х-2019-12-2s-97-108. (in Russian with English summary)

52. McNeill D., Hoekstra P. (1973). In-situ measurements on the conductivity and surface impedance os sea ice at VLF. Radio Science, 8(1), 23-30, DOI: 10.1029/RS008i001p00023.

53. Miklyaev P.S., Petrova T.B. (2010). The study of radon emanation in clay. Geoecology. Engineering geology, hydrogeology, geocryology, (1), 13-22, (in Russian).

54. Minkin L. (2002). Is diffusion, thermodiffusion, or advection a primary mechanism of indoor radon entry? Radiation protection dosimetry, 102(2), 153-161, DOI: 10.1093/oxfordjournals.rpd.a006084.

55. Minkin L. (2003). Thermal diffusion of radon in porous media. Radiation protection dosimetry, 106(3), 267-272, DOI: 10.1093/oxfordjournals.rpd.a006360.

56. Minkin L., & Shapovalov A.S. (2008). Indoor radon entry: 30 years later.

57. Minkin L., & Shapovalov A.S. (2016). Thermo-diffusional radon waves in soils. Science of the Total Environment, 565, 1-7, DOI: 10.1016/j.scitotenv.2016.04.131.

58. Moreno V., Bach J., Zarroca M., Font L., Roqué C., & Linares R. (2018). Characterization of radon levels in soil and groundwater in the North Maladeta Fault area (Central Pyrenees) and their effects on indoor radon concentration in a thermal spa. Journal of environmental radioactivity, 189, 1-13, DOI: 10.1016/j.jenvrad.2018.03.001.

59. MU Assessment of the potential radon danger of land plots for construction of residential, public and industrial buildings.

60. Neznal M., Neznal M., Matolin M., Barnet I., & Miksova J. (2004). The new method for assessing the radon risk of building sites, Prague: Czech Geological Survey, 48.

61. Nizinski C.A., Hanson A.B., Fullmer B.C., Mecham N.J., Tasdizen T., & McDonald IV L.W. (2020). Effects of process history on the surface morphology of uranium ore concentrates extracted from ore. Minerals Engineering, 156, 106457.

62. NRB-99/2009, Radiation Safety Standarts, Sanitary rules and regulations, Russia.

63. Nuccetelli C., Leonardi F., & Trevisi R. (2020). Building material radon emanation and exhalation rate: Need of a shared measurement protocol from the european database analysis. Journal of Environmental Radioactivity, 225, 106438, DOI: 10.1016/j.jenvrad.2020.106438.

64., (2019). Canadian Nuclear Safety Commission. [online] Available at: [Accessed 21 Mar. 2021].

65. Obu J., Westermann S., Bartsch A., Berdnikov N., Christiansen H. H., Dashtseren A., ... & Zou D. (2019). Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Science Reviews, 193, 299-316, DOI: 10.1016/j.earscirev.2019.04.023.

66. Oskooi B., & Pedersen L.B. (2006). Resolution of airborne VLF data. Journal of applied geophysics, 58(2), 158-175, DOI: 10.1016/j.jappgeo.2005.06.002.

67. OSPORB 99/2010 Basic sanitary rules for ensuring radiation safety, Russia.

68. Pavlov I.V. (1996). Mathematical model of the process of radon exhalation from the earth’s surface and criteria for assessing the potential radon hazard of a built-up area. HENRI, 97, 15-26.

69. Pereira A.J.S.C., Godinho M.M., & Neves L.J.P.F. (2010). On the influence of faulting on small-scale soil-gas radon variability: a case study in the Iberian Uranium Province. Journal of environmental radioactivity, 101(10), 875-882, DOI: 10.1016/j.jenvrad.2010.05.014.

70. Pinto P.V., Kumara K.S., & Karunakara N. (2020). Mass exhalation rates, emanation coefficients and enrichment pattern of radon, thoron in various grain size fractions of monazite rich beach placers. Radiation Measurements, 130, 106220, DOI: 10.1016/j.radmeas.2019.106220.

71. (2018). Industrial goods and services in Russia. [online] Available at: [Accessed 21 Mar. 2021].

72. Protection R. (2007). ICRP publication 103. Ann ICRP, 37(2.4), 2.

73. Rachold V., Bolshiyanov D.Y., Grigoriev M.N., Hubberten H.W., Junker R., Kunitsky V.V., ... & Schneider W. (2007). Nearshore Arctic subsea permafrost in transition. Eos, Transactions American Geophysical Union, 88(13), 149-150, DOI: 10.1029/2007EO130001.

74. Radon in Indoor Air: A Review of Policy and Law in Canada. Canadian Environmental Law Association, 2014.

75. Ramesh Babu, V., Ram, S., & Sundararajan, N. (2007). Modeling and inversion of magnetic and VLF-EM data with an application to basement fractures: A case study from Raigarh, India. Geophysics, 72(5), B133-B140, DOI: 10.1190/1.2759921.

76. Rogers, V. C., & Nielson, K. K. (1991). Multiphase radon generation and transport in porous materials. Health Physics, 60(6), 807-815, DOI: 10.1097/00004032-199106000-00006.

77. Ryzhakova N.K., Stavitskaya K.O., & Udalov A.A. (2018). Issues in assessment of potential radon hazard at building sites.Radiatsionnaya Gygiena= Radiation Hygiene, 11(2), 37-44, DOI: 10.21514/1998-426Х-2018-11-2-37-44 (in Russian with English summary).

78. Ryzhakova, N. K., & Shilova, K. O. (2018). Method for assessing the radon hazard of building sites.

79. Sabbarese C., Ambrosino F., D’Onofrio A., Pugliese M., La Verde G., D’Avino V., & Roca V. (2021). The first radon potential map of the Campania region (southern Italy). Applied Geochemistry, 104890, DOI: 10.1016/j.apgeochem.2021.104890.

80. Sahoo S.K., Katlamudi M., Barman C., & Lakshmi G.U. (2020). Identification of earthquake precursors in soil radon-222 data of Kutch, Gujarat, India using empirical mode decomposition based Hilbert Huang Transform. Journal of Environmental Radioactivity, 222, 106353, DOI: 10.1016/j.jenvrad.2020.106353.

81. Sellmann P.V., & Delaney A.J. (1990). Radon measurements as indicators of permafrost distribution. Cold regions science and technology, 18(3), 331-336, DOI: 10.1016/0165-232X(90)90029-V.

82. Selvam S., Muthukumar P., Sajeev S., Venkatramanan S., Chung S. Y., Brindha K., ... & Murugan R. (2021). Quantification of submarine groundwater discharge (SGD) using radon, radium tracers and nutrient inputs in Punnakayal, south coast of India. Geoscience Frontiers, 12(1), 29-38, DOI: 10.1016/j.gsf.2020.06.012.

83. SP 11-102-97 Engineering and environmental surveys for construction.

84. SP 47.13330.2016 Engineering surveys for construction.

85. Streletskiy D.A., Suter L.J., Shiklomanov N.I., Porfiriev B.N., & Eliseev D.O. (2019). Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environmental Research Letters, 14(2), 025003.

86. Sundararajan N., Nandakumar G., Chary M.N., Ramam K., & Srinivas, Y. (2007). VES and VLF—an application to groundwater exploration, Khammam, India. The Leading Edge, 26(6), 708-716, DOI: 10.1190/1.2748489.

87. Sundararajan, N., Ramesh Babu, V., Shiva Prasad, N., & Srinivas, Y. (2006). VLFPROS-: A Matlab code for processing of VLF-EM data. Computers & Geosciences, 32(10), 1806-1813.

88. Telford W.M. (1983). Radon mapping in the search for uranium. In Developments in Geophysical Exploration Methods—4, Springer, Dordrecht, 155-194

89. Thu H.N.P., & Van Thang N. (2020). The effects of some soil characteristics on radon emanation and diffusion. Journal of environmental radioactivity, 216, 106189, DOI: 10.1016/j.jenvrad.2020.106189.

90. Titaeva N.A. (2000). Nuclear Geochemistry, 336. (in Russian).

91. Tsapalov A., Kovler K., & Miklyaev P. (2016). Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface. Journal of environmental radioactivity, 160, 28-35, DOI: 10.1016/j.jenvrad.2016.04.016.

92. UNSCEAR, 2019. Sources, effects and risks of ionizing radiation. United Nations, NewYork: Report.

93. Väisänen M., Krab E.J., Monteux S., Teuber L.M., Gavazov K., Weedon J.T., ... & Dorrepaal E. (2020). Meshes in mesocosms control solute and biota exchange in soils: A step towards disentangling (a) biotic impacts on the fate of thawing permafrost. Applied Soil Ecology, 151, 103537, DOI: 10.1016/j.apsoil.2020.103537.

94. Verkhovtsev V.A. & Dushin, V.A. (2000). On the prospects for the discovery of complex uranium deposits «Type of unconformity» in the north of the Urals. Bulletin of the Ural State Mining University, (10). (in Russian).

95. World Health Organization. (2009). WHO handbook on indoor radon: a public health perspective. World Health Organization.

96. Wright J.L. (1988) VLF Interpretation Manual. EDA Instruments (now Scintrex. Ltd.), Concord, Ont.

97. Yang Y., Li Y., Guan Z., Chen Z., Zhang L., Lv C. J., & Sun F. (2018). Correlations between the radon concentrations in soil gas and the activity of the Anninghe and the Zemuhe faults in Sichuan, southwestern of China. Applied Geochemistry, 89, 23-33 DOI: 10.1016/j.apgeochem.2017.11.006.

98. Zavyalov A.D., Peretokin S.A., Danilova T.I., Medvedeva N.S., & Akatova K.N. (2019). General Seismic Zoning: From maps GSZ-97 to GSZ-2016 and new-generation maps in the parameters of physical characteristics. Seismic Instruments, 55(4), 445-463, DOI: 10.3103/S0747923919040121.

99. Zhang Z.Q., Wu Q.B., Hou M.T., Tai B.W., & An Y. K. (2021). Permafrost change in Northeast China in the 1950s–2010s. Advances in Climate Change Research, DOI: 10.1016/j.accre.2021.01.006.

100. Zolkos S., Fiske G., Windholz T., Duran G., Yang Z., Olenchenko V., ... & Natali S. M. (2021). Detecting and Mapping Gas Emission Craters on the Yamal and Gydan Peninsulas, Western Siberia. Geosciences, 11(1), 21, DOI: 10.3390/geosciences11010021.

For citation:

Puchkov A.V., Yakovlev E.Y., Hasson N., Sobrinho G., Tsykareva Y.V., Tyshov A.S., Lapikov P.I., Ushakova E.V. Radon Hazard In Permafrost Conditions: Current State Of Research. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 0;.

Views: 191

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)